期刊文献+
共找到1,200篇文章
< 1 2 60 >
每页显示 20 50 100
Design and analysis of an advanced thermal management system for the solar close observations and proximity experiments spacecraft 被引量:1
1
作者 Liu Liu Kangli Bao +4 位作者 Jianchao Feng Xiaofei Zhu Haoyu Wang Xiaofeng Zhang Jun Lin 《Astronomical Techniques and Instruments》 CSCD 2024年第1期52-61,共10页
In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relat... In this paper,the mission and the thermal environment of the Solar Close Observations and Proximity Experiments(SCOPE)spacecraft are analyzed,and an advanced thermal management system(ATMS)is designed for it.The relationship and functions of the integrated database,the intelligent thermal control system and the efficient liquid cooling system in the ATMS are elaborated upon.For the complex thermal field regulation system and extreme space thermal environment,a modular simulation and thermal field planning method are proposed,and the feasibility of the planning algorithm is verified by numerical simulation.A solar array liquid cooling system is developed,and the system simulation results indicate that the temperatures of the solar arrays meet the requirements as the spacecraft flies by perihelion and aphelion.The advanced thermal management study supports the development of the SCOPE program and provides a reference for the thermal management in other deep-space exploration programs. 展开更多
关键词 Solar Close Observations and Proximity experiments Adaptive thermal control method thermal field planning method Pumped liquid cooling system Advanced thermal management system
下载PDF
Thermal Fluid-Solid Interaction Model and Experimental Validation for Hydrostatic Mechanical Face Seals 被引量:10
2
作者 HUANG Weifeng LIAO Chuanjun +3 位作者 LIU Xiangfeng SUO Shuangfu LIU Ying WANG Yuming 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第5期949-957,共9页
Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants.More accurate models on the operating mechanism of the seals are ... Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants.More accurate models on the operating mechanism of the seals are needed to help improve their performance.The thermal fluid–solid interaction(TFSI)mechanism of the hydrostatic seal is investigated in this study.Numerical models of the flow field and seal assembly are developed.Based on the mechanism for the continuity condition of the physical quantities at the fluid–solid interface,an on-line numerical TFSI model for the hydrostatic mechanical seal is proposed using an iterative coupling method.Dynamic mesh technology is adopted to adapt to the changing boundary shape.Experiments were performed on a test rig using a full-size test seal to obtain the leakage rate as a function of the differential pressure.The effectiveness and accuracy of the TFSI model were verified by comparing the simulation results and experimental data.Using the TFSI model,the behavior of the seal is presented,including mechanical and thermal deformation,and the temperature field.The influences of the rotating speed and differential pressure of the sealing device on the temperature field,which occur widely in the actual use of the seal,are studied.This research proposes an on-line and assembly-based TFSI model for hydrostatic mechanical face seals,and the model is validated by full-sized experiments. 展开更多
关键词 mechanical face seal HYDROSTATIC thermal fluid–solid interaction experiment
下载PDF
Water-Tank Experiment on the Thermal Circulation Induced by the Bottom Heating in an Asymmetric Valley 被引量:1
3
作者 刘辉志 梁彬 +2 位作者 朱凤荣 张伯寅 桑建国 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第4期536-546,共11页
Water tank experiments were carried out to investigate the thermal convection due to the bottom heating in an asymmetrical valley under neutral and stably stratified approach flows with the Particle Image Velometry (P... Water tank experiments were carried out to investigate the thermal convection due to the bottom heating in an asymmetrical valley under neutral and stably stratified approach flows with the Particle Image Velometry (PIV) visualization technique. In the neutral stratification approach flow, the ascending draft induced by bottom heating is mainly located in the center of the valley in calm ambient wind. However, with ambient wind flow, the thermal convection is shifted leeward, and the descending draft is located on the leeward side of the valley, while the ascending draft is located on the windward side. The descending draft is minorly turbulent and organized, while the ascending draft is highly turbulent. With the increase of the towing speed, the descending and ascending drafts induced by the mechanical elevation begin to play a more dominant role in the valley flow, while the role of the thermal convection in the valley airflow becomes limited. In the stable stratification approach flow, the thermal convection is limited by the stable stratification and no distinct circulation is formed in calm ambient wind. With ambient wind, agravity wave appears in the upper layer in the valley. With the increase of the ambient wind speed, a gravity wave plays an important role in the valley flow, and the location and intensity of the thermal convection are also modulated by the gravity internal waves. The thermal convection has difficulty penetrating the upper stable layer. Its exchange is limited between the air in the upper layer and that in the lower layer in the valley, and it is adverse to the diffusion of pollutants in the valley. 展开更多
关键词 thermal convection in a valley water tank experiment bottom heating
下载PDF
Experimental Study of Effect of Vents in Thermal Ventilation
4
作者 LIU Dong,LIU Xiao-yu,ZHUANG Jiang-ting,SHEN Hui(Research Institute of HVAC and Gas Engineering,College of Mechanical Engineering,Tongji University,Shanghai 200092,China) 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第S1期30-34,共5页
The effects of vents on thermal ventilation to save energy in the cold rolling workshop of Baosteel were investigated.According to the scale modeling theory,a small chamber was established.The details about constructi... The effects of vents on thermal ventilation to save energy in the cold rolling workshop of Baosteel were investigated.According to the scale modeling theory,a small chamber was established.The details about construction of experiment on thermal ventilation and the preparation and arrangement of apparatus were discussed,and then the effects of vents on thermal ventilation were studied through experiments,which includes the temperature distribution,the volume of ventilation,the temperature difference between inlets and outlets,the neutral plane,and the effective thermal coefficient of thermal natural ventilation.Based on this,the effects of natural ventilation based on varied area of inlets and outlets and those of vents on one side and on different sides were compared.According to the experiments,the area of inlet vents and outlet vents affect the temperature distribution in chamber,and their effects on ventilation volume are different,but the effects of vents in single side or different sides are the same under the condition that only thermal ventilation is considered. 展开更多
关键词 VENTS NATURAL ventilation experiment on thermal ventilation
下载PDF
Thermogravimetry-differential thermal analysis coupled with chromatography as a thermal simulation experimental method and its application to gaseous hydrocarbons from different source rocks 被引量:1
5
作者 史基安 赵欣 +1 位作者 王琪 刘全有 《Chinese Journal Of Geochemistry》 EI CAS 2005年第3期289-296,共8页
In this paper a thermogravimetry-differential thermal analysis method coupled with chromatography (TG-DTA-GC) has been adopted to simulate the generation of gaseous hydrocarbons from different hydrocarbon source rocks... In this paper a thermogravimetry-differential thermal analysis method coupled with chromatography (TG-DTA-GC) has been adopted to simulate the generation of gaseous hydrocarbons from different hydrocarbon source rocks such as coals, mudstones, and carbonate rocks with different maturities. The temperature programming for thermal simulation experiment is 20℃/min from ambient temperature to 700℃. As viewed from the quantities and composition of generated gaseous hydrocarbons at different temperatures, it is shown that low-mature coal has experienced the strongest exothermic reaction and the highest loss of weight in which the first exothermic peak is relatively low. Low-mature coal samples have stronger capability of generating gaseous hydrocarbons than high-mature samples. The amounts and composition of gaseous hydrocarbons generated are closely related not only to the abundance of organic carbon in source rocks, but also to the type of kerogen in the source rocks, and their thermal maturity. In the present highly mature and over-mature rock samples organic carbon, probably, has already been exhausted, so the production of gaseous hydrocarbons in large amounts is impossible. The contents of heavy components in gaseous hydrocarbons from the source rocks containing type-Ⅰand -Ⅱ kerogens are generally high; those of light components such as methane and ethane in gaseous hydrocarbons from the source rocks with Ⅲ-type kerogens are high as well. In the course of thermal simulation of carbonate rock samples, large amounts of gaseous hydrocarbons were produced in a high temperature range. 展开更多
关键词 碳氢化合物 岩石 热量分析法 煤矿 地球化学 物理方法
下载PDF
Evaluation of facial temperature distribution changes during meditation using infrared thermal imaging:An experimental,cross-over study
6
作者 Raoying Wang Lili Zhu +7 位作者 Xiaohan Liu Tengteng Li Jiayi Gao Hongjuan Li Yu Lu Yuanfeng Zhang Yibo Li Tao Lu 《Journal of Traditional Chinese Medical Sciences》 CAS 2023年第3期257-266,共10页
Objective:To investigate the differences between meditation and resting states using infrared thermal imaging(IRTI)to determine facial temperature distribution features during meditation and annotate the patterns of f... Objective:To investigate the differences between meditation and resting states using infrared thermal imaging(IRTI)to determine facial temperature distribution features during meditation and annotate the patterns of facial temperature changes during meditation from the perspective of traditional Chinese medicine facial diagnosis.Methods:Each participant performed 10 min meditation and 10 min resting but in different sequences.A concentration test was set as the task load,followed by a meditation/resting or resting/meditation session,during which the participants'facial temperatures were observed using IRTI.Participants were scored on the Big Five Inventory(BFI)and Mindful Attention Awareness Scale(MAAS).Results:Forehead temperatures decreased more during meditation than during the resting state.The chin temperature increased only during meditation(P<.0001).For the subjects with meditation experience,there were significant differences in the temperatures of the left forehead(P<.01),right forehead(P<.01)and chin(P<.05)between the meditation and resting state at the 10~(th)min.In the nontask state,the BFI-Extraversion showed a negative correlation with the temperature of the left forehead(R=-0.41,P=.03).In the post-task state,the temperature of the left forehead was negatively correlated with scores on the MAAS(R=-0.42,P=.02).Conclusion:Using IRTI to study meditation offers a practical solution to the challenges in meditation research.The results indicate that an increase in chin temperature may be a representative feature of a meditation state,and forehead temperature is also a potential indicator. 展开更多
关键词 MEDITATION Infrared thermal imaging MINDFULNESS PERSONALITY Meditation experience
下载PDF
Mechanisms of carbon isotopic fractionation in the process of natural gas generation: Geochemical evidence from thermal simulation experiment
7
作者 PENG Weilong LIU Quanyou +5 位作者 HU Guoyi LYU Yue ZHU Dongya MENG Qingqiang GUO Fengtao WANG Ruoli 《Petroleum Exploration and Development》 2020年第5期1042-1054,共13页
Low maturity coal samples were taken from the Ordos Basin to conduct gold tube thermal simulation experiment in a closed system,and the characteristics of the products were analyzed to find out the fractionation mecha... Low maturity coal samples were taken from the Ordos Basin to conduct gold tube thermal simulation experiment in a closed system,and the characteristics of the products were analyzed to find out the fractionation mechanism of carbon isotopes and the causes of abnormal carbon isotopic compositions of natural gas.At the heating rates of 2℃/h(slow)and 20℃/h(rapid),the low maturity coal samples of the Ordos Basin had the maximum yields of alkane gas of 302.74 mL/g and 230.16 mL/g,theδ13C1 ranges of-34.8‰to-23.6‰and-35.5‰to-24.0‰;δ13C2 ranges of-28.0‰to-9.0‰and-28.9‰to-8.3‰;andδ13C3 ranges of-25.8‰to-14.7‰and-26.4‰to-13.2‰,respectively.Alkane gas in the thermal simulation products of rapid temperature rise process showed obvious partial reversal of carbon isotope series at 550℃,and at other temperatures showed positive carbon isotope series.In the two heating processes,theδ13C1 turned lighter first and then heavier,and the non-monotonic variation of theδ13C1 values is because the early CH4 is from different parent materials resulted from heterogeneity of organic matter or the carbon isotope fractionation formed by activation energy difference of early enriched 12CH4 and late enriched 13CH4.The reversal of carbon isotope values of heavy hydrocarbon gas can occur not only in high to over mature shale gas(oil-type gas),but also in coal-derived gas.Through thermal simulation experiment of toluene,it is confirmed that the carbon isotope value of heavy hydrocarbon gas can be reversed and inversed at high to over mature stage.The isotope fractionation effect caused by demethylation and methyl linkage of aromatic hydrocarbons may be an important reason for carbon isotope inversion and reversal of alkane gas at the high to over mature stage. 展开更多
关键词 thermal simulation experiment natural gas carbon isotope composition fractionation mechanism low maturity coal aromatic hydrocarbon pyrolysis
下载PDF
Thermal perception method of virtual chemistry experiments
8
作者 Hengwei XU Siru LI +6 位作者 Wenpeng SONG Jiajun SUN Xinli WU Xiaoqi WANG Wenzhen YANG Zhigeng PAN Abdennour EI RHALIBI 《Virtual Reality & Intelligent Hardware》 2020年第4期305-315,共11页
Background With the aim of addressing the difficulty in identifying temperatures in virtual chemistry experiments,we propose a temperature-sensing simulation method of virtual chemistry experiments.Methods We construc... Background With the aim of addressing the difficulty in identifying temperatures in virtual chemistry experiments,we propose a temperature-sensing simulation method of virtual chemistry experiments.Methods We construct a virtual chemistry experiment temperature simulation platform,based on which a wearable temperature generation device is developed.The typical middle school virtual experiments of concentrated sulfuric acid dilution and ammonium nitrate dissolution are conducted to verify the actual effect of the device.Results The platform is capable to indicate near real-world experimental situations.The performance of the device not only meets the temperature sensing characteristics of human skin,but also matches the temperature change of virtual chemistry experiments in real-time.Conclusions It is demonstrated that this temperature-sensing simulation method can represent exothermic or endothermic chemistry experiments,which is beneficial for students to gain understanding of the principles of thermal energy transformation in chemical reactions,thus avoiding the danger that may be posed in the course of traditional teaching of chemistry experiments effectively.Although this method does not have a convenient enough operation for users,the immersion of virtual chemical experiments can be enhanced. 展开更多
关键词 Virtual reality Chemistry experiment thermal simulation Temperature feedback
下载PDF
Evolution and organic geochemical significance of bicyclic sesquiterpanes in pyrolysis simulation experiments on immature organic-rich mudstone 被引量:3
9
作者 Gang Yan Yao-Hui Xu +2 位作者 Yan Liu Peng-Hai Tang Wei-Bin Liu 《Petroleum Science》 SCIE CAS CSCD 2019年第3期502-512,共11页
Sesquiterpanes are ubiquitous components of crude oils and ancient sediments.Liquid saturated hydrocarbons from simulated pyrolysis experiments on immature organic-rich mudstone collected from the Lower Cretaceous Hes... Sesquiterpanes are ubiquitous components of crude oils and ancient sediments.Liquid saturated hydrocarbons from simulated pyrolysis experiments on immature organic-rich mudstone collected from the Lower Cretaceous Hesigewula Sag were analyzed by gas chromatography-mass spectrometry(GC-MS).C14 bicyclic sesquiterpanes,namely,8β(H)-drimane,8β(H)-homodrimane,and 8 a(H)-homodrimane were detected and identified on basis of their diagnostic fragment ions(m/z123,179,193,and 207),and previously published mass spectra data,and these bicyclic sesquiterpanes presented relatively regular characteristics in their thermal evolution.The ratios 8β(H)-drimane/8β(H)-homodrimane,8β(H)-homodrimane/8 a(H)-homodrimane,and 8β(H)-drimane/8 a(H)-homodrimane all show a clear upward trend with increasing temperature below the temperature turning point.Thus,all these ratios can be used as evolution indexes of source rocks in the immature-lowmaturity stage.However,the last two ratios may be more suitable than the first ratio as valid parameters for measuring the extent of thermal evolution of organic matter in the immature-low-maturity stage because their change amplitude with increasing temperature is more obvious. 展开更多
关键词 Immature-low-maturity stage Simulated PYROLYSIS experiment BICYCLIC sesquiterpanes thermal EVOLUTION MATURITY indicators
下载PDF
Optimal design of vegetation in residential district with numerical simulation and field experiment 被引量:5
10
作者 洪波 林波荣 +1 位作者 王冰 李树华 《Journal of Central South University》 SCIE EI CAS 2012年第3期688-695,共8页
Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment impro... Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment improvement in winter was investigated by carrying out field experiments in Heqingyuan residential area in Beijing,and after that,numerical simulation with SPOTE(simulation platform for outdoor thermal environment) experiments for outdoor thermal environment of vegetation was adopted for comparison.The conclusions were summarized as follows:1) By comparing the experimental data with simulation results,it could be concluded that the wind field simulated was consistent with the actual wind field,and the flow distribution impacted by vegetation could be accurately reflected;2) The wind velocity with vegetation was lower than that without vegetation,and the wind velocity was reduced by 46%;3) By adjusting arrangement and types of vegetation in the regions with excessively large wind velocity,the pedestrian-level wind velocity could be obviously improved through the simulation and comparison. 展开更多
关键词 wind environment simulation platform for outdoor thermal environment (SPOTE) field experiment optimal design of vegetation SIMULATION
下载PDF
Numerical study on coupled thermo-mechanical processes in sp Pillar Stability Experiment 被引量:1
11
作者 Pengzhi Pan Xiating Feng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第2期136-144,共9页
This paper presents a study of the full three-dimensional thermo-mechanical (TM) behavior of rock pillar in,Aspo Pillar Stability Experiment (APSE) using a self-developed numerical code TM-EPCA3D. The transient th... This paper presents a study of the full three-dimensional thermo-mechanical (TM) behavior of rock pillar in,Aspo Pillar Stability Experiment (APSE) using a self-developed numerical code TM-EPCA3D. The transient thermal conduction function was descritized on space and time scales, and was solved by using cellular automaton (CA) method on space scale and finite difference method on time scale, respectively. The advantage of this approach is that no global, but local matrix is used so that it avoids the need to develop and solve large-scale linear equations and the complexity therein. A thermal conductivity versus stress function was proposed to reflect the effect of stress on thermal field. The temperature evolution and induced thermal stress in the pillar part during the heating and cooling processes were well simulated by the developed code. The factors that affect the modeling results were discussed. It is concluded that, the complex TM behavior of Aspo rock pillar is significantly influenced by the complex boundary and initial conditions. 展开更多
关键词 Aspo Pillar Stability experiment (APSE) Elasto-plastic cellular automaton (EPCA) Thermo-mechanical (TM) coupling thermal conduction thermal conductivity
下载PDF
Density disturbance of small-scale fieldaligned irregularities in the ionosphere heating experiments
12
作者 Xiang WANG Chen ZHOU +2 位作者 Moran LIU Binbin NI Zhengyu ZHAO 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第12期9-18,共10页
A theoretical model which describes the small-scale irregularities excited by powerful high frequency (3–30 MHz) electromagnetic wave in ionosphere heating is investigated quantitatively in this paper. The model is... A theoretical model which describes the small-scale irregularities excited by powerful high frequency (3–30 MHz) electromagnetic wave in ionosphere heating is investigated quantitatively in this paper. The model is based on the transport equation in magnetic plasma and mode conversion from electromagnetic wave to electrostatic wave in ionospheric modification.Threshold electric field for exciting small-scale (meter scale) irregularities and spatial spectra of irregularities are analytically calculated by this model. The results indicate that background electron density and geomagnetic field play an important role for the threshold electric field and the spatial scale of the electron density irregularities. The results demonstrate that the electric field threshold increases with the decrease of the spatial scale of the irregularities. For exciting meter scale irregularities, the threshold electric field is about tens of mV m^(-1). The theoretical results are consistent with those of the experiments. 展开更多
关键词 small-scale irregularities ionosphere heating experiment thermal parametric instability resonant instability
下载PDF
A creep model for ultra-deep salt rock considering thermal-mechanical damage under triaxial stress conditions 被引量:1
13
作者 Chao Liang Jianfeng Liu +3 位作者 Jianxiong Yang Huining Xu Zhaowei Chen Lina Ran 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期588-596,共9页
To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloadin... To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloading confining pressure conditions.Experimental results show that the salt sample deforms more significantly with the increase of applied temperature and deviatoric loading.The accelerated creep phase is not occurring until the applied temperature reaches 130℃,and higher temperature is beneficial to the occurrence of accelerated creep.To describe the specific creep behavior,a novel three-dimensional(3D)creep constitutive model is developed that incorporates the thermal and mechanical variables into mechanical elements.Subsequently,the standard particle swarm optimization(SPSO)method is adopted to fit the experimental data,and the sensibility of key model parameters is analyzed to further illustrate the model function.As a result,the model can accurately predict the creep behavior of salt under the coupled thermo-mechanical effect in deep-buried condition.Based on the research results,the creep mechanical behavior of wellbore shrinkage is predicted in deep drilling projects crossing salt layer,which has practical implications for deep rock mechanics problems. 展开更多
关键词 Creep experiments Creep model thermal and mechanical damage Fractional derivative
下载PDF
The Experimental Investigation of Recirculation of Air-Cooled System for a Large Power Plant
14
作者 Wanli Zhao Qiyue Wang Peiqing Liu 《Energy and Power Engineering》 2010年第4期291-297,共7页
The paper introduces thermal buoyancy effects to experimental investigation of wind tunnel simulation on direct air-cooled condenser for a large power plant. In order to get thermal flow field of air-cooled tower, PIV... The paper introduces thermal buoyancy effects to experimental investigation of wind tunnel simulation on direct air-cooled condenser for a large power plant. In order to get thermal flow field of air-cooled tower, PIV experiments are carried out and recirculation ratio of each condition is calculated. Results show that the thermal flow field of the cooling tower has great influence on the recirculation under the cooling tower. Ameliorating the thermal flow field of the cooling tower can reduce the recirculation under the cooling tower and improve the efficiency of air-cooled condenser also. 展开更多
关键词 DIRECT Air-Cooled CONDENSER thermal Flow Field Recirculation PIV experiment Power PLANT
下载PDF
The Influence of CO on the Carbon Isotopic Composition of CH_4 in Closed Pyrolysis Experiment With Coal 被引量:1
15
作者 刘全有 刘文汇 《Chinese Journal Of Geochemistry》 EI CAS 2004年第4期359-365,共7页
A low-mature coal (R o=0.4%, from the Manjia’er depression, Tarim Basin, China) was subjected to closed system pyrolysis, in sealed gold tubes, under isothermal temperature conditions. The carbon isotopic composition... A low-mature coal (R o=0.4%, from the Manjia’er depression, Tarim Basin, China) was subjected to closed system pyrolysis, in sealed gold tubes, under isothermal temperature conditions. The carbon isotopic compositions of the pyrolyst fractions (hydrocarbon, CO 2, CO, etc.) at two temperature points (350°C and 550°C) were measured. The results showed that δ 13C CH 4 value is generally heavier at 350°C than that at 550°C, because the high abundance of CO generated at low temperature would greatly influence δ 13C CH 4 value, and the retention time of CO in gas chromatograph is close to that of CH 4. But CO is formed through chemical reaction of the oxygen-containing functional group -C=O, e.g. lactones, ketones, ether, etc. at low temperature, while CO 2 comes mainly from decarboxylization. The carbon isotopic composition of coal gas from Lanzhou Coal Gas Works was definitely different from that of thermally pyrolysed products from coal. The δ 13C CH 4 value of coal gas was abnormally heavier than δ 13C CO. At the same time, the reversed sequence ( δ 13C 1> δ 13C 2) of δ 13C 1 and δ 13C 2 happened. The bond energy of free ions generally decides the sequence of generation of hydrocarbon fractions according to the chemical structure, whereas the stability of pyrolysate fractions and their carbon isotope fractionation are affected by the C-C bond energy. 展开更多
关键词 低级无烟煤 热仿真试验 煤气 碳同位素 地球化学
下载PDF
Analog-experiment analysis of ash-deposition monitoring model of boiler economizers in power plants
16
作者 程伟良 夏国栋 徐寿臣 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第6期680-683,共4页
Ash deposition is a form of particulate fouling, and appears usually in boiler economizers. The ash deposition increases capital expenditure, energy input and maintenance costs. An analog experiment for monitoring ash... Ash deposition is a form of particulate fouling, and appears usually in boiler economizers. The ash deposition increases capital expenditure, energy input and maintenance costs. An analog experiment for monitoring ash deposition was performed from the analogous objective of a 410 t/h boiler economizer to verify the rationality and reliability of the ash-deposition-monitoring model presented in order to increase the security and economy in economizer running. The analog experiment platform is a tube-shell exchanger that conforms well to the conditions of a self-modeling area. The analog flue gas in the shell side is the heated air mixed with ash, and in the tube side the fluid is water heated by the flue gas. The fluid state in the water side and the flue gas side follows the second self-modeling area. A 4-factor-3-level orthogonal table was used to schedule 9 operation conditions of orthogonal experiment, with the 4 factors being heat power, flue gas velocity, ashes grain diameter and adding ashes quantity while the three levels are different values due to different position classes in every factor. The ash deposition thermal resistances is calculated by the model with the measure parameters of temperature and pressure drop. It shows that the values of the ash deposition thermal resistances gradually increase up to a stable state. And the experimental results are reliable by F testing method at α= 0.001. Therefore, the model can be applied in online monitoring of ash deposition in a boiler economizers in power plants and provides scientific decision on ash deposition prediction and sootblowing. 展开更多
关键词 thermal power engineering monitoring model ash deposition orthogonal experiment boiler economizer tube-shell exchanger
下载PDF
Temperature in High Temperature SHPB Experiments
17
作者 邓志方 谢若泽 +2 位作者 颜怡霞 李思忠 黄西成 《Transactions of Tianjin University》 EI CAS 2008年第B10期536-539,共4页
As an experimental technique, it’s desired that the temperature in specimen is uniform in high temperature split Hopkinson pressure bar (SHPB) experiments. However, the temperature in specimen decreases and the tempe... As an experimental technique, it’s desired that the temperature in specimen is uniform in high temperature split Hopkinson pressure bar (SHPB) experiments. However, the temperature in specimen decreases and the temperature of bars increases when specimen starts to contact with bars, which induces the nonuniform temperature distribution in specimen, and may result in inac-curacy of experimental results. In this paper, the temperature distributions of specimen and bars in high temperature SHPB experiments were investigated while the specimen was heated alone. Firstly, the temperature history of specimen was measured at different initial temperatures by ex-periments, then simulation was carried out. Simulation results were consistent with experimental results by adjusting the thermal contact coefficient between specimen and bars. By this way, the thermal contact coefficient and simulation results were validated, and the proper cold contact times of specimen and bars in high temperature SHPB experiments were discussed. Finally, the results were compared with those in references. 展开更多
关键词 high temperature SHPB experiment heat transfer thermal contact coefficient cold contact time
下载PDF
Thermal Experience in an Era of Low Exergy Domestic Heating Systems
18
作者 Chris Tweed 《Journal of Civil Engineering and Architecture》 2023年第4期161-172,共12页
Existing theories of thermal comfort are largely blind to the way heat is delivered to spaces.Field studies,however,show that people create and enjoy thermal conditions that lie outside conventional definitions of com... Existing theories of thermal comfort are largely blind to the way heat is delivered to spaces.Field studies,however,show that people create and enjoy thermal conditions that lie outside conventional definitions of comfort-the thermal experience itself is valued-some of which are tied to particular ways of delivering heat.The concept“exergy”can be used to describe the quality of heat energy and its ability to provide warmth.A shift from fossil fuels towards renewable sources heralds a new era of space heating consisting mainly of low exergy sources,such as heat pumps.This marks a major turning point in the history of domestic heating.This paper begins by discussing variations in domestic thermal environments before considering new forms of low carbon heating.Later sections analyse the way in which these systems deliver heat within people’s homes and consider the implications for thermal experience,comfort and energy consumption. 展开更多
关键词 thermal experience heating systems alliesthesia low energy design
下载PDF
Comparison of microwave- and thermal-assisted rock fragmentation methods at different temperatures and loading rates
19
作者 Wei Yao Shuai Wang +2 位作者 Bangbiao Wu Ying Xu Kaiwen Xia 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期799-819,共21页
Understanding the effects of microwave irradiation and thermal treatment on the dynamic compression and fragmentation properties of rocks is essential to quantify energy consumption in rock engineering.In this study,F... Understanding the effects of microwave irradiation and thermal treatment on the dynamic compression and fragmentation properties of rocks is essential to quantify energy consumption in rock engineering.In this study,Fangshan granite(FG)specimens were exposed to microwave irradiation and heat treatment.The damage of FG specimens induced by these two methods was compared using X-ray CT scanning and ultrasonic wave method.The temperatures of FG after microwave irradiation and thermal treatment were effectively evaluated using a newly proposed technique.A novelty method for precisely determining the geometric features of fragments is developed to estimate the fragmentation energy.Thus,the dynamic uniaxial compressive strength(UCS),the dynamic fragmentation characteristics,and the fragmentation energy of FG after these two pretreatment methods can be reasonably compared.The noticeable distinction of loading rate effect on the dynamic UCS of FG between these two pretreatment methods is first observed.A relationship is established between the dynamic UCS and the damage induced by microwave irradiation and heat treatment.Moreover,fragmentation energy fan analysis is introduced to accurately compare the fragmentation properties of FG after two pretreatment methods in dynamic compression tests. 展开更多
关键词 Fangshan granite Dynamic experiments Microwave irradiation thermal treatment Loading rate FRAGMENTATION
下载PDF
Anisotropy of Thermal-expansion for β-Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine: Quantum Chemistry Calculation and Molecular Dynamics Simulation
20
作者 钱文 张朝阳 +3 位作者 舒远杰 熊鹰 宗和厚 张伟斌 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第1期57-62,I0003,共7页
Molecular dynamics simulations on octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) at 303-383 K and atmospheric pressure are carried out under NPT ensemble and COMPASS force field, the equilibrium structures a... Molecular dynamics simulations on octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) at 303-383 K and atmospheric pressure are carried out under NPT ensemble and COMPASS force field, the equilibrium structures at elevated temperatures were obtained and showed that the stacking style of molecules don't change. The coefficient of thermal expansion (CTE) values were calculated by linear fitting method. The results show that the CTE values are close to the experimental results and show anisotropy. The total energies of HMX cells with separately increasing expansion rates (100%-105%) along each crystallographic axis was calculated by periodic density functional theory method, the results of the energy change rates are anisotropic, and the correlation equations of energy change-CTE values are established. Thus the hypostasis of the anisotropy of HMX crystal's thermal expansion, the determinate molecular packing style, is elucidated. 展开更多
关键词 Octahydro-1 3 5 7-tetranitro-1 3 5 7-tetrazocine Molecular dynamics simula-tion thermal expansion ANISOTROPY Density functional theory
下载PDF
上一页 1 2 60 下一页 到第
使用帮助 返回顶部