The effect of thermal shock, in an accelerated-corrosion environment spectrum, on the fatigue and corrosion behavior of 7B04-T6 aluminum alloy, was determined. The environment spectrum consists of two modules, namely...The effect of thermal shock, in an accelerated-corrosion environment spectrum, on the fatigue and corrosion behavior of 7B04-T6 aluminum alloy, was determined. The environment spectrum consists of two modules, namely: salt-spray corrosion and thermal shock. The effect of thermal shock on the mechanical properties was determined via tensile tests; SEM, DCS, and XRD were used to determine the effect of thermal shock on the corrosion products. In addition, the corrosion resistance of the products was ascertained through electrochemical testing. The results show that the mechanical properties and fatigue life of the aluminum alloy will decline with prolonged thermal shock time. The thermal shock process may result in denser surface corrosion products than those formed on the no thermal shock specimens, and transformation of some Al(OH)_3 into Al OOH. Al OOH may have resulted in improved corrosion resistance and hence a lower decrease in the fatigue life after corrosion, compared with that of the no thermal shock specimen. Repeated corrosion/thermal shock may have delayed further decease in the fatigue life. Therefore, selection of an appropriate equivalent thermal shock temperature and time was essential for designing the environmental spectrum.展开更多
In this work, a new TeO2-BaO-BaF2-La2O3-LaF3 oxyfluorotellurite glass system is investigated. Differential thermal analysis (DTA) and structural analysis by Raman scattering spectra are reported on the glasses. The DT...In this work, a new TeO2-BaO-BaF2-La2O3-LaF3 oxyfluorotellurite glass system is investigated. Differential thermal analysis (DTA) and structural analysis by Raman scattering spectra are reported on the glasses. The DTA results indicated that an increase of fluoride content in the glasses decreases the glass transition temperature (Tg) and increases the crystallization onset temperature (Tx). As a result the 70TeO2·20BaF2·10LaF3 glass showed a large Hruby's parameter, possessing excellent thermal stability. Changes in glass network structure with fluoride content are discussed based on the Raman scattering spectra of glasses. The glass network structures in the 70TeO2·4(20-x)BaO·xBaF2·(10-y)La2O3·yaF3 glasses are basically composed of both Te(O, F)4 and Te(O, F)3 units, but the Te(O, F)4/Te(O, F)3 ratio in the glass becomes higher with increasing fluoride content. This may be considered one of the reasons why the 70TeO2·20BaF2·10LaF3 glass exhibits excellent thermal stability.展开更多
New results of two computer experiments on modeling of superthermal neutron-nuclear combustion of natural uranium for two different flux densities of external neutron source and duration of half a year each are presen...New results of two computer experiments on modeling of superthermal neutron-nuclear combustion of natural uranium for two different flux densities of external neutron source and duration of half a year each are presented. The simulation results demonstrate the dependence of the autowave combustion modes on the parameters of the external source.展开更多
We present a study of the fabrication of monolayer MoS_2 on n-Si(111) substrates by modified thermal evaporation deposition and the optoelectrical properties of the resulting film. The as-grown MoS_2 ultrathin film is...We present a study of the fabrication of monolayer MoS_2 on n-Si(111) substrates by modified thermal evaporation deposition and the optoelectrical properties of the resulting film. The as-grown MoS_2 ultrathin film is about 10 nm thick, or about a few atomic layers of MoS_2. The film has a large optical absorption range of 300-700 nm and strong luminescence emission at 682 nm. The optical absorption range covered almost the entire ultraviolet to visible light range, which is very useful for making high-efficiency solar cells. Moreover, the MoS_2/Si heterojunction exhibited good rectification characteristics and excellent photovoltaic effects. The power conversion efficiency of the heterojunction device is about 1.79% under white light illumination of 10 m W/cm^2. The results show that the monolayer MoS_2 film will find many applications in high-efficiency optoelectronic devices.展开更多
We calculated the room-temperature phonon thermal conductivity and phonon spectrum of alkyl group-functionalized zigzag graphene nanoribbons(ZGNRs) with molecular dynamics simulations. The increase in both chain lengt...We calculated the room-temperature phonon thermal conductivity and phonon spectrum of alkyl group-functionalized zigzag graphene nanoribbons(ZGNRs) with molecular dynamics simulations. The increase in both chain length and concentration of alkyl groups caused remarkable reduction of phonon thermal conductivity in functionalized ZGNRs. Phonon spectra analysis showed that functionalization of ZGNR with alkyl functional groups induced phonon–structural defect scattering, thus leading to the reduction of phonon thermal conductivity of ZGNR. Our study showed that surface functionalization is an effective routine to tune the phonon thermal conductivity of GNRs, which is useful in graphene thermal-related applications.展开更多
Solid solutions of In2(1-x)(HfMg)xMo3O12 are synthesized by solid state reaction with the aim to reduce the phase transition temperature of In2Mo3O12 and improve its thermal expansion property.The effects of(HfMg...Solid solutions of In2(1-x)(HfMg)xMo3O12 are synthesized by solid state reaction with the aim to reduce the phase transition temperature of In2Mo3O12 and improve its thermal expansion property.The effects of(HfMg)^6+ incorporation on the phase transition and thermal expansion are investigated.It is shown that the monoclinic-to-orthorhombic phase transition temperature obviously decreases and the coefficient of thermal expansion(CTE) of the orthorhombic becomes less negative and approaches to zero with increasing the content of(HfMg)^6+.A near zero thermal expansion covering the case at room temperature(RT) is achieved for the solid solutions with x ≥ 0.85,implying potential applications of this material in many fields.展开更多
Although the approach using non-thermal plasma(NTP) for deNOx has been studied for over 15 years,how to achieve higher removal effciency with lower cost is still a barrier for its industrial application.In order to ...Although the approach using non-thermal plasma(NTP) for deNOx has been studied for over 15 years,how to achieve higher removal effciency with lower cost is still a barrier for its industrial application.In order to investigate the impact of the argon additive on electron density,energy and nitric oxide reduction process in plasma,the spectrum of the dielectric barrier discharge at atmospheric pressure in a coaxial reactor was measured using the monochromater with high resolution.The comparative experiments for NO reduction were carried out simultaneously in N2/O2/NO plasma stream with and without argon,respectively.The nitrogen molecular spectrum which is attributed to the energy level transition(C^3πu→ B^3πg) was compared in the wavelength range 300-480 nm and the electron density and temperature were determined based on the relative intensities and Stark broadening width of spectral lines.The spectrum results indicated that the argon additive could enhance the intensity of emissive spectrum of plasma,thus the electron concentration as well as the energy was increased,and finally prompted the ionization rate to produce active N,O and O3.The results of NO reduction showed that NO conversion effciency increased in the range of 10%-30% with 5% addition of argon in stream comparing with the condition without argon additive.This study will play a positive role in the industrial application of dielectric barrier discharge deNOx reactor.展开更多
After using the "Time-Frequency Relative Power Spectrum"( T-F RPS) method based on the China Geostationary Meteorological Satellite( FY-2 C/FY-2 E) infrared remote sensing brightness temperature data process...After using the "Time-Frequency Relative Power Spectrum"( T-F RPS) method based on the China Geostationary Meteorological Satellite( FY-2 C/FY-2 E) infrared remote sensing brightness temperature data processing,we rapidly and accurately extracted and identified pre-earthquake thermal infrared anomalies for the April 16,2013 MW7. 8 of Khash,Iran Earthquake. Spatial evolution of anomalies showed the distribution and process. The anomalies were mainly distributed in the east of Khash,Iran. The characteristics of process and distribution presented X-Type model of NE and near NS strip which relates to the geological structure of this region. The epicenter was located near the intersection region of the X-Type abnormal migration process. Besides,the results of time series of anomalies showed that,the duration was more than 40 days and the maximum amplitude was about18 times. The earthquake occurred 20 days after the abnormal maximum amplitude which appeared on March 26,2013.展开更多
Non-thermal plasma at atmospheric pressure was explored for the preparation of polysilicon from SiCl4. The power supply sources of positive pulse and alternating current (8 kHz and 100 kHz) were compared for polysil...Non-thermal plasma at atmospheric pressure was explored for the preparation of polysilicon from SiCl4. The power supply sources of positive pulse and alternating current (8 kHz and 100 kHz) were compared for polysilicon preparation. The samples prepared by using the 100 kHz power source were crystalline silicon. The effects of H2 and SiCl4 volume fractions were investigated. The optical emission spectra showed that silicon species played an important role in polysilicon deposition展开更多
The Zr(0.5)Hf(0.5)VPO7 is successfully synthesized by the solid-state method with near-zero thermal expansion. Powder x-ray diffraction(XRD), Raman spectroscopy, thermal dilatometry, and scanning electron micros...The Zr(0.5)Hf(0.5)VPO7 is successfully synthesized by the solid-state method with near-zero thermal expansion. Powder x-ray diffraction(XRD), Raman spectroscopy, thermal dilatometry, and scanning electron microscopy(SEM) are used to investigate the structure, the phase transition, and the coefficient of thermal expansion(CTE) of Zr(0.5)Hf(0.5)VPO7. The investigation results show that the samples are of the single cubic type with a space group of Pa3ˉ at room temperature(RT).It can be inferred that the superstructure is transformed from the 3 × 3 × 3 superstructure to the 1 × 1 × 1 ideal crystal in a temperature range between 310 K and 323 K. The CTE is measured by a dilatometer to be 0.59 × 10^(-6) K^(-1)(310 K–673 K). The values of intrinsic(XRD) and extrinsic(dilatometric) thermal expansion are both near zero. The results show that Zr(0.5)Hf(0.5)VPO7 has near-zero thermal expansion behavior over a wide temperature range.展开更多
The thermal aging behavior of poly ( vinyl alcohol ) ( PVA ) hydrogel was studied at four different temperatures of 40 ℃, 50 ℃, 60 ℃ and 70 ℃ in one year. The samples of PVA hydrogel were closely covered by pl...The thermal aging behavior of poly ( vinyl alcohol ) ( PVA ) hydrogel was studied at four different temperatures of 40 ℃, 50 ℃, 60 ℃ and 70 ℃ in one year. The samples of PVA hydrogel were closely covered by plastic film. The changes of their chemical structures and physical properties during aging were measured through different measurable techniques including tensile testing, gel permeation chromatography ( GPC ), viscosity analysis, and Fourier transform infrared (FTIR) spec- trum. The results showed that the molecular weight of PVA in hydrogel changed little with time and temperature. FTIR spectra of PVA in all the samples were similar to those of the original samples. The tensile strength of PVA hydrogel didn't change until the 330th days.展开更多
文摘The effect of thermal shock, in an accelerated-corrosion environment spectrum, on the fatigue and corrosion behavior of 7B04-T6 aluminum alloy, was determined. The environment spectrum consists of two modules, namely: salt-spray corrosion and thermal shock. The effect of thermal shock on the mechanical properties was determined via tensile tests; SEM, DCS, and XRD were used to determine the effect of thermal shock on the corrosion products. In addition, the corrosion resistance of the products was ascertained through electrochemical testing. The results show that the mechanical properties and fatigue life of the aluminum alloy will decline with prolonged thermal shock time. The thermal shock process may result in denser surface corrosion products than those formed on the no thermal shock specimens, and transformation of some Al(OH)_3 into Al OOH. Al OOH may have resulted in improved corrosion resistance and hence a lower decrease in the fatigue life after corrosion, compared with that of the no thermal shock specimen. Repeated corrosion/thermal shock may have delayed further decease in the fatigue life. Therefore, selection of an appropriate equivalent thermal shock temperature and time was essential for designing the environmental spectrum.
基金This work was supported by the National Natural Science Foundation of China under grant No.60207006the Optical Science and Technology of Shanghai under grant No.022261046"Qiningxing”Projert(No.04QMX1448)of Shanghai Municipal Science and Technology Conmission.
文摘In this work, a new TeO2-BaO-BaF2-La2O3-LaF3 oxyfluorotellurite glass system is investigated. Differential thermal analysis (DTA) and structural analysis by Raman scattering spectra are reported on the glasses. The DTA results indicated that an increase of fluoride content in the glasses decreases the glass transition temperature (Tg) and increases the crystallization onset temperature (Tx). As a result the 70TeO2·20BaF2·10LaF3 glass showed a large Hruby's parameter, possessing excellent thermal stability. Changes in glass network structure with fluoride content are discussed based on the Raman scattering spectra of glasses. The glass network structures in the 70TeO2·4(20-x)BaO·xBaF2·(10-y)La2O3·yaF3 glasses are basically composed of both Te(O, F)4 and Te(O, F)3 units, but the Te(O, F)4/Te(O, F)3 ratio in the glass becomes higher with increasing fluoride content. This may be considered one of the reasons why the 70TeO2·20BaF2·10LaF3 glass exhibits excellent thermal stability.
文摘New results of two computer experiments on modeling of superthermal neutron-nuclear combustion of natural uranium for two different flux densities of external neutron source and duration of half a year each are presented. The simulation results demonstrate the dependence of the autowave combustion modes on the parameters of the external source.
基金supported in parts by the National Natural Science Foundation of China (No. 60976071)the Scientific Project Program of Suzhou City (No. SYG201121)
文摘We present a study of the fabrication of monolayer MoS_2 on n-Si(111) substrates by modified thermal evaporation deposition and the optoelectrical properties of the resulting film. The as-grown MoS_2 ultrathin film is about 10 nm thick, or about a few atomic layers of MoS_2. The film has a large optical absorption range of 300-700 nm and strong luminescence emission at 682 nm. The optical absorption range covered almost the entire ultraviolet to visible light range, which is very useful for making high-efficiency solar cells. Moreover, the MoS_2/Si heterojunction exhibited good rectification characteristics and excellent photovoltaic effects. The power conversion efficiency of the heterojunction device is about 1.79% under white light illumination of 10 m W/cm^2. The results show that the monolayer MoS_2 film will find many applications in high-efficiency optoelectronic devices.
基金Project supported by the National Natural Science Foundation of China(Grant No.11504418)China Scholarship Council Scholarship Program(Grant No.201706425053)the Fundamental Research Funds for the Central Universities of China(Grant No.2015XKMS075)
文摘We calculated the room-temperature phonon thermal conductivity and phonon spectrum of alkyl group-functionalized zigzag graphene nanoribbons(ZGNRs) with molecular dynamics simulations. The increase in both chain length and concentration of alkyl groups caused remarkable reduction of phonon thermal conductivity in functionalized ZGNRs. Phonon spectra analysis showed that functionalization of ZGNR with alkyl functional groups induced phonon–structural defect scattering, thus leading to the reduction of phonon thermal conductivity of ZGNR. Our study showed that surface functionalization is an effective routine to tune the phonon thermal conductivity of GNRs, which is useful in graphene thermal-related applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.11574276,51302249,and 51503185)the Doctoral Fund of the Ministry of Education of China(Grant No.20114101110003)
文摘Solid solutions of In2(1-x)(HfMg)xMo3O12 are synthesized by solid state reaction with the aim to reduce the phase transition temperature of In2Mo3O12 and improve its thermal expansion property.The effects of(HfMg)^6+ incorporation on the phase transition and thermal expansion are investigated.It is shown that the monoclinic-to-orthorhombic phase transition temperature obviously decreases and the coefficient of thermal expansion(CTE) of the orthorhombic becomes less negative and approaches to zero with increasing the content of(HfMg)^6+.A near zero thermal expansion covering the case at room temperature(RT) is achieved for the solid solutions with x ≥ 0.85,implying potential applications of this material in many fields.
基金supported by the National Basic Research Program (973) of China (No. 2006CB200302)the Natural Science Foundation of Jiangsu Province (No.BK2007224)the Scientific Research Starting Foundation for Returned Overseas Chinese Scholars,Ministry ofEducation,China
文摘Although the approach using non-thermal plasma(NTP) for deNOx has been studied for over 15 years,how to achieve higher removal effciency with lower cost is still a barrier for its industrial application.In order to investigate the impact of the argon additive on electron density,energy and nitric oxide reduction process in plasma,the spectrum of the dielectric barrier discharge at atmospheric pressure in a coaxial reactor was measured using the monochromater with high resolution.The comparative experiments for NO reduction were carried out simultaneously in N2/O2/NO plasma stream with and without argon,respectively.The nitrogen molecular spectrum which is attributed to the energy level transition(C^3πu→ B^3πg) was compared in the wavelength range 300-480 nm and the electron density and temperature were determined based on the relative intensities and Stark broadening width of spectral lines.The spectrum results indicated that the argon additive could enhance the intensity of emissive spectrum of plasma,thus the electron concentration as well as the energy was increased,and finally prompted the ionization rate to produce active N,O and O3.The results of NO reduction showed that NO conversion effciency increased in the range of 10%-30% with 5% addition of argon in stream comparing with the condition without argon additive.This study will play a positive role in the industrial application of dielectric barrier discharge deNOx reactor.
基金the National Natural Science Foundation of China(41574044)
文摘After using the "Time-Frequency Relative Power Spectrum"( T-F RPS) method based on the China Geostationary Meteorological Satellite( FY-2 C/FY-2 E) infrared remote sensing brightness temperature data processing,we rapidly and accurately extracted and identified pre-earthquake thermal infrared anomalies for the April 16,2013 MW7. 8 of Khash,Iran Earthquake. Spatial evolution of anomalies showed the distribution and process. The anomalies were mainly distributed in the east of Khash,Iran. The characteristics of process and distribution presented X-Type model of NE and near NS strip which relates to the geological structure of this region. The epicenter was located near the intersection region of the X-Type abnormal migration process. Besides,the results of time series of anomalies showed that,the duration was more than 40 days and the maximum amplitude was about18 times. The earthquake occurred 20 days after the abnormal maximum amplitude which appeared on March 26,2013.
基金support from the Scientific Research Fund of Liaoning Provincial Education Department for Colleges and Universities of China (No. 2008T229)
文摘Non-thermal plasma at atmospheric pressure was explored for the preparation of polysilicon from SiCl4. The power supply sources of positive pulse and alternating current (8 kHz and 100 kHz) were compared for polysilicon preparation. The samples prepared by using the 100 kHz power source were crystalline silicon. The effects of H2 and SiCl4 volume fractions were investigated. The optical emission spectra showed that silicon species played an important role in polysilicon deposition
基金supported by the National Natural Science Foundation of China(Grant Nos.11574276,U173112,and 41401384)the Project of Shandong Provincial Higher Educational Science and Technology Program,China(Grant No.J17KB127)+1 种基金the Science and Technology Development Plans of Binzhou City,China(Grant Nos.2014ZC0307 and 2015ZC0210)Binzhou University Research Fund Project,China(Grant Nos.BZXYG1513 and BZXYG1706)
文摘The Zr(0.5)Hf(0.5)VPO7 is successfully synthesized by the solid-state method with near-zero thermal expansion. Powder x-ray diffraction(XRD), Raman spectroscopy, thermal dilatometry, and scanning electron microscopy(SEM) are used to investigate the structure, the phase transition, and the coefficient of thermal expansion(CTE) of Zr(0.5)Hf(0.5)VPO7. The investigation results show that the samples are of the single cubic type with a space group of Pa3ˉ at room temperature(RT).It can be inferred that the superstructure is transformed from the 3 × 3 × 3 superstructure to the 1 × 1 × 1 ideal crystal in a temperature range between 310 K and 323 K. The CTE is measured by a dilatometer to be 0.59 × 10^(-6) K^(-1)(310 K–673 K). The values of intrinsic(XRD) and extrinsic(dilatometric) thermal expansion are both near zero. The results show that Zr(0.5)Hf(0.5)VPO7 has near-zero thermal expansion behavior over a wide temperature range.
文摘The thermal aging behavior of poly ( vinyl alcohol ) ( PVA ) hydrogel was studied at four different temperatures of 40 ℃, 50 ℃, 60 ℃ and 70 ℃ in one year. The samples of PVA hydrogel were closely covered by plastic film. The changes of their chemical structures and physical properties during aging were measured through different measurable techniques including tensile testing, gel permeation chromatography ( GPC ), viscosity analysis, and Fourier transform infrared (FTIR) spec- trum. The results showed that the molecular weight of PVA in hydrogel changed little with time and temperature. FTIR spectra of PVA in all the samples were similar to those of the original samples. The tensile strength of PVA hydrogel didn't change until the 330th days.