The interaction of the heavy charged particles, of energy higher than a few MeV/amu with semiconductor single crystals can lead to the structural modification of their physical properties and participate at the creati...The interaction of the heavy charged particles, of energy higher than a few MeV/amu with semiconductor single crystals can lead to the structural modification of their physical properties and participate at the creation of the defects which are called latent tracks. Several models were tested for explaining the track formation in semiconductors irradiated with swift heavy ions, one of them is the thermal spike model. This work shows that the experimental data obtained in semiconductors, in our case in InP irradiated with swift heavy ions can be described on the basis of the thermal spike model. The experimental results obtained on InP have allowed the parameters of this model to be understood. The only free parameter is the electron-phonon coupling constant g which is unknown in InP This model allows the evolution of track radii to be found as a function of electronic stopping power (dE/dx)e for different beam energies. For InP a good agreement is observed between calculated track radii and experimental ones on one hand, and on the other hand between calculated and experimental threshold value of electronic stopping power. This allows determining the electron-phonon coupling value for InP to be equal 0.9 × 10%11 Wcm-3K-land the (dE/dx)e threshold for latent track formation in InP equal 27 + 3 keV/nm for ion energies ranging from 0.4-10 MeV/amu.展开更多
The primary motivation for studying how irradiation modifies the structures and properties of solid materials involves the understanding of undesirable phenomena,including irradiation-induced degradation of components...The primary motivation for studying how irradiation modifies the structures and properties of solid materials involves the understanding of undesirable phenomena,including irradiation-induced degradation of components in nuclear reactors and space exploration,and beneficial applications,including material performance tailoring through ion beam modification and defect engineering.In this work,the formation mechanism of latent tracks with different damage morphologies in LiNbO_(3)crystals under 0.09-6.17 Me V/u ion irradiation with an electronic energy loss from 2.6-13.2 ke V/nm is analyzed by experimental characterizations and numerical calculations.Irradiation-induced damage is preliminarily evaluated via the prism coupling technique to analyze the correlation between the dark-mode spectra and energy loss profiles of irradiated regions.Under the irradiation conditions of different ion velocities and electronic energy losses,different damage morphologies,from individual spherical defects to discontinuous and continuous tracks,are experimentally characterized.During ion penetration process,the ion velocity determines the spatiotemporal distribution of deposited irradiation energy induced by electronic energy loss,meaning that the two essential factors including electronic energy loss and ion velocity coaffect the track damage.The inelastic thermal spike model is used to numerically calculate the spatiotemporal evolutions of energy deposition and the corresponding atomic temperature under different irradiation conditions,and a quantitative relationship is proposed by comparison with corresponding experimentally observed track damage morphologies.The obtained quantitative relationship between irradiation conditions and track damage provides deep insight and guidance for understanding the damage behavior of crystal materials in extreme radiation environments and selecting irradiation parameters,including ion species and energies,for ion beam technique application in atomic-level defect manipulation,material modification,and micro/nanofabrication.展开更多
文摘The interaction of the heavy charged particles, of energy higher than a few MeV/amu with semiconductor single crystals can lead to the structural modification of their physical properties and participate at the creation of the defects which are called latent tracks. Several models were tested for explaining the track formation in semiconductors irradiated with swift heavy ions, one of them is the thermal spike model. This work shows that the experimental data obtained in semiconductors, in our case in InP irradiated with swift heavy ions can be described on the basis of the thermal spike model. The experimental results obtained on InP have allowed the parameters of this model to be understood. The only free parameter is the electron-phonon coupling constant g which is unknown in InP This model allows the evolution of track radii to be found as a function of electronic stopping power (dE/dx)e for different beam energies. For InP a good agreement is observed between calculated track radii and experimental ones on one hand, and on the other hand between calculated and experimental threshold value of electronic stopping power. This allows determining the electron-phonon coupling value for InP to be equal 0.9 × 10%11 Wcm-3K-land the (dE/dx)e threshold for latent track formation in InP equal 27 + 3 keV/nm for ion energies ranging from 0.4-10 MeV/amu.
基金supported by the National Natural Science Foundation of China(No.11875038)the National Laboratory of Heavy Ion Accelerator in Lanzhou,and the State Key Laboratory of Nuclear Physics and Technology,Peking University+2 种基金financial support from the Young Scholars Program of Shandong Universityfinancial support from the Youth Innovation Promotion Association CAS(No.2019262)supported by the U.S.Department of Energy,Office of Science,Basic Energy Sciences,Materials Sciences and Engineering Division。
文摘The primary motivation for studying how irradiation modifies the structures and properties of solid materials involves the understanding of undesirable phenomena,including irradiation-induced degradation of components in nuclear reactors and space exploration,and beneficial applications,including material performance tailoring through ion beam modification and defect engineering.In this work,the formation mechanism of latent tracks with different damage morphologies in LiNbO_(3)crystals under 0.09-6.17 Me V/u ion irradiation with an electronic energy loss from 2.6-13.2 ke V/nm is analyzed by experimental characterizations and numerical calculations.Irradiation-induced damage is preliminarily evaluated via the prism coupling technique to analyze the correlation between the dark-mode spectra and energy loss profiles of irradiated regions.Under the irradiation conditions of different ion velocities and electronic energy losses,different damage morphologies,from individual spherical defects to discontinuous and continuous tracks,are experimentally characterized.During ion penetration process,the ion velocity determines the spatiotemporal distribution of deposited irradiation energy induced by electronic energy loss,meaning that the two essential factors including electronic energy loss and ion velocity coaffect the track damage.The inelastic thermal spike model is used to numerically calculate the spatiotemporal evolutions of energy deposition and the corresponding atomic temperature under different irradiation conditions,and a quantitative relationship is proposed by comparison with corresponding experimentally observed track damage morphologies.The obtained quantitative relationship between irradiation conditions and track damage provides deep insight and guidance for understanding the damage behavior of crystal materials in extreme radiation environments and selecting irradiation parameters,including ion species and energies,for ion beam technique application in atomic-level defect manipulation,material modification,and micro/nanofabrication.