Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s d...Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s dimensional accuracy. This paper is a continuation of our earlier work, which aimed to analyze the effect of the internal temperature of a machine tool as the machine is put into operation and vary the external temperature, the machine floor temperature. Some experiments are carried out under controlled conditions to study how machine tool components get heated up and how this heating up affects the machine’s accuracy due to thermally induced deviations. Additionally, another angle is added by varying the machine floor temperature. The parameters mentioned above are explored in line with the overall thermal stability of the machine tool and its dimensional accuracy. A Robodrill CNC machine tool is used. The CNC was first soaked with thermal energy by gradually raising the machine floor temperature to a certain level before putting the machine in operation. The machine was monitored, and analytical methods were deplored to evaluate thermal stability. Secondly, the machine was run idle for some time under raised floor temperature before it was put into operation. Data was also collected and analyzed. It is observed that machine thermal stability can be achieved in several ways depending on how the above parameters are joggled. This paper, in conclusion, reinforces the idea of machine tool warm-up process in conjunction with a carefully analyzed and established machine floor temperature variation for the approximation of the machine tool’s thermally stability to map the long-time behavior of the machine tool.展开更多
The Pt/Si/Ta/Ti multilayer metal contacts on 4H-Si C are annealed in Ar atmosphere at 600°C-1100°C by a rapid thermal processor(RTP). The long-term thermal stability is evaluated by aging the annealed cont...The Pt/Si/Ta/Ti multilayer metal contacts on 4H-Si C are annealed in Ar atmosphere at 600°C-1100°C by a rapid thermal processor(RTP). The long-term thermal stability is evaluated by aging the annealed contact at 600°C in air. The contact's properties are determined by current-voltage measurement, and the specific contact resistance is calculated based on the transmission line model(TLM). Transmission electron microscope(TEM) and energy-dispersive x-ray spectrometry(EDX) are used to characterize the interface morphology, thickness, and composition. The results reveal that a higher annealing temperature is favorable for the formation of an Ohmic contact with a lower specific contact resistance, and causes the rapid degradation of the Ohmic contact in the aging process.展开更多
Future electronic devices toward high integration and miniaturization demand reliable operation of dielectric materials at high electric fields and elevated temperatures.However,the electrical deterioration caused by ...Future electronic devices toward high integration and miniaturization demand reliable operation of dielectric materials at high electric fields and elevated temperatures.However,the electrical deterioration caused by Joule heat generation remains a persistent challenge to overcome.Here,the solution-processed polyimide(PI)nanocomposites with unique two-dimensional(2D)alumina nanoplates are reported.Substantial improvements in the breakdown strength,charge–discharge efficiency and discharged energy density at elevated temperatures have been demonstrated in the composites,owing to simultaneously suppressed conduction loss and increased thermal conductivity upon the incorporation of 2D Al_(2)O_(3) nanofillers possessing excellent dielectric insulation and thermophysical properties.The predominance of Al_(2)O_(3) nanoplates in enhancing thermal stability and high-temperature capacitive performance over nanoparticles and nanowires is validated experimentally and is further rationalized via finite element simulations.Notably,the Al_(2)O_(3) nanoplates filled PI nanocomposite exhibits a hightemperature capability up to 200℃ and remarkable efficiency(e.g.≥95% at 200 MV/m)over a wide temperature range,which outperforms commercial dielectric polymers and rivals the state-of-the-art polyimide nanocomposites.展开更多
The phase transformation behavior, mechanical properties, and the thermal stability of CuAlAg alloy were studied and minor rare earth (0.1 wt pct La+Ce) was added to improve the mechanical property of the studied allo...The phase transformation behavior, mechanical properties, and the thermal stability of CuAlAg alloy were studied and minor rare earth (0.1 wt pct La+Ce) was added to improve the mechanical property of the studied alloy. It was found that Ag addition in the CuAl binary alloy can improve the stability of martensitic transformation and high Al content leads to the disappearing of martensitic transformation. The tensile strength and strain of the Cu-10.6AI-5.8Ag (wt pct) alloy were measured to be 383.5 MPa and 0.86%, respectively. With rare earth addition, the tensile strain increased from 0.86% to 1.47%. The CuAlAg alloy did not exhibit martensitic transformation on the second heating process. Its poor thermal stability still needs to be improved.展开更多
Improving the thermal stability of diamond and other superhard materials has great significance in various applications. Here, we report the synthesis and characterization of bulk diamond–cBN–B4C–Si composites sint...Improving the thermal stability of diamond and other superhard materials has great significance in various applications. Here, we report the synthesis and characterization of bulk diamond–cBN–B4C–Si composites sintered at high pressure and high temperature(HPHT, 5.2 GPa, 1620–1680 K for 3–5 min). The results show that the diamond, cBN, B4C,BxSiC, SiO2 and amorphous carbon or a little surplus Si are present in the sintered samples. The onset oxidation temperature of 1673 K in the as-synthesized sample is much higher than that of diamond, cBN, and B4C. The high thermal stability is ascribed to the covalent bonds of B–C, C–N, and the solid-solution of BxSiC formed during the sintering process. The results obtained in this work may be useful in preparing superhard materials with high thermal stability.展开更多
Based on IEC standards and Chinese national standards of sintered NdFeB materials, in the paper the hightemperature, room-temperature properties and thermal stability of about one hundred samples of NdFeB materials fo...Based on IEC standards and Chinese national standards of sintered NdFeB materials, in the paper the hightemperature, room-temperature properties and thermal stability of about one hundred samples of NdFeB materials for electrical machines were measured and analyzed.These materials are produced by ten representative manufactories in China.Combined with the analysis results, the paper points out that the magnetic properties of sintered NdFeB materials for electrical machines should meet not only the specific values in standards, such as Br, (BH)max ,HcJ ,but also the requirement of temperature coefficients a (Br) , a (HcJ).展开更多
Cycle stability and thermal safety are critical to the commercialization of nickel-rich layered materials,yet whether there is a potential correlation between these two factors is still controversial. Herein, the rela...Cycle stability and thermal safety are critical to the commercialization of nickel-rich layered materials,yet whether there is a potential correlation between these two factors is still controversial. Herein, the relationship between the cycle stability and thermal stability of nickel-rich cathode materials have been systematically studied through five different calcination temperatures of Li[NiCoMn]O(NCM83) cathode materials. The research results confirm that the cycle stability and thermal safety of nickel-rich cathode materials do not necessarily show a positive correlation. Actually, with the calcination temperature elevated, the thermal stability of the NCM83 is enhanced, while the cycle stability is degraded. This opposite correlation is not commonly reported in previous literatures. In this work, systematical characterizations demonstrate that under the experimental conditions, the capacity retention of NCM83 is mainly determined by the Li/Ni cation disorder and H2-H3 irreversible phase transition,which is optimal at lower calcination temperature. Meanwhile, the thermal stability is mainly impacted by thermal expansion characteristics and interfacial stability of cathode material, and it is dramatically improved by the mechanical strength of the secondary particles reinforced at high calcinated temperature. This study provides some new insights on understanding and designing of the high-energy cathode materials with long cycle-life and superior safety.展开更多
A novel Nd-Fe-B type permanent magnet with excellent thermal stability was designed by Co replacing Fe in the main phase and the grain boundary phase.The remanence and coercivity temperature coefficient reach 0.058%/...A novel Nd-Fe-B type permanent magnet with excellent thermal stability was designed by Co replacing Fe in the main phase and the grain boundary phase.The remanence and coercivity temperature coefficient reach 0.058%/℃and 0.465%/℃in the te mperature range from 25 to 100℃,which are much lower than those of commercial Nd-Fe-B magnet.An enhanced Curie temperature is obtained for the novel magnet due to the Co substitution,which significantly improves the operating temperature.The microstructure result reveals that an amorphous phase exists in the intergranular grains which is probably responsible for the deterioration of intrinsic coercivity.This work can provide a reference for the design and optimization of components of sintered Nd-Fe-B magnets with excellent thermal stability.展开更多
Morphotropic phase boundary(MPB)plays a key role in tuning piezoelectric responses of ferroelectric ceramics.Here,Bi_(0.5)Na_(0.5)TiO_(3)modified BiFeO_(3)-BaTiO_(3)ternary solid solutions of 0.7BiFeO_(3)-(0.3-x)BaTiO...Morphotropic phase boundary(MPB)plays a key role in tuning piezoelectric responses of ferroelectric ceramics.Here,Bi_(0.5)Na_(0.5)TiO_(3)modified BiFeO_(3)-BaTiO_(3)ternary solid solutions of 0.7BiFeO_(3)-(0.3-x)BaTiO_(3)-xBi_(0.5)Na_(0.5)TiO_(3)(referred to as BF-BT-xBNT,0.00≤x≤0.04)were prepared for lead-free piezo-electrics.All the ceramics exhibit an MPB with coexisting rhombohedral(R)and tetragonal(T)phases,and the R/T phase ratio decreases upon increasing x.The increment of BNT promotes the grain growth,lowers the leakage current and Curie temperature(TC),and gradually drives the ferroelectric to relaxor transition.Because of the MPB with appropriate R/T phase ratio,increased grain size and density,and decreased leakage current,the well-balanced performance between d_(33)=206 pC/N and TC=488℃is obtained in x=0.01 case.In addition,the further enhanced in-situ d_(33)=286e347 pC/N is obtained in BF-BT-xBNT ceramics along with the improved depolarization temperature T_(d)from 280 to 312℃,showing a potential application for lead-free piezoceramics at high temperature.展开更多
A thermoelectric generation Stirling engine (TEG-Stirling engine) is discussed by employing a low temperature Stirling engine and the dissipative equation of motion derived from the method of thermomechanical dynamics...A thermoelectric generation Stirling engine (TEG-Stirling engine) is discussed by employing a low temperature Stirling engine and the dissipative equation of motion derived from the method of thermomechanical dynamics (TMD). The results and mechanism of axial flux electromagnetic induction (AF-EMI) are applied to a low temperature Stirling engine, resulting in a TEG-Stirling engine. The method of TMD produced thermodynamically consistent and time-dependent physical quantities for the first time, such as internal energy ℰ(t), thermodynamic work Wth(t), the total entropy (heat dissipation) Qd(t)and measure or temperature of a nonequilibrium state T˜(t). The TMD analysis produced a lightweight mechanical system of TEG-Stirling engine which derives electric power from waste heat of temperature (40˚CT100˚C) by a thermoelectric conversion method. An optimal low rotational speed about 30θ′(t)/(2π)60(rpm) is found, applicable to devices for sustainable, clean energy technologies. The stability of a thermal state and angular rotations of TEG-Stirling engine are specifically shown by employing properties of nonequilibrium temperature T˜(t), which is also applied to study optimal fuel-injection and combustion timings of heat engines.展开更多
Polycrystalline diamond compacts(PDC), which are composed of diamond and WC/Co substrate, and synthesized at high pressure and high temperature(HPHT), are widely applied as the tooth of drilling bit. However, the ...Polycrystalline diamond compacts(PDC), which are composed of diamond and WC/Co substrate, and synthesized at high pressure and high temperature(HPHT), are widely applied as the tooth of drilling bit. However, the thermal stability of PDC will be reduced when diamond transforms into graphite due to cobalt in PDC acting as a catalyst during the drilling work. In this study, a new three-layer structured PDC with enhanced thermal stability has been successfully synthesized at pressures of 5.5–7.0 GPa and temperatures of 1650–1750?C. In this structure, the diamond-Si C composite acts as the working layer,and the diamond-Si C-Co composite and WC/Co cements are as the intermediate layer and substrate,respectively. It is found that the initial oxidizing temperature of the three-layered PDC is enhanced up to820?C, which is significantly higher than that(~780?C) of the conventional PDC counterpart.展开更多
The.thermal stability characteristics of kerosine-type fuels are examined using a heated-tube apparatus which allows independent control of fuel pressure,fuel temperature,tube-wall temperature and fuel flow rate.This ...The.thermal stability characteristics of kerosine-type fuels are examined using a heated-tube apparatus which allows independent control of fuel pressure,fuel temperature,tube-wall temperature and fuel flow rate.This method is identified simply as a“constant wall temperature method”.It is different from a previous widely used method,which is identified as a“constant heat flux method”.It is a single-pass system.Rate of deposition on the tube walls are measured by weighing the test tube before and after each test. For a fuel temperature of 250℃,it is found that deposition rates increase continuously with increase in tube- wall temperature.This finding contradicts the results of previous studies which had led to the conclusion that deposition rates increase with increase in wall temperature up to a certain value(around 650 K)beyond which any further increase in wall temperature causes the rate of deposition to decline. The present results show clearly that the constant wall temperature method is more suitable for assessing the thermal stability of gas turbine fuels.展开更多
Organic light-emitting devices(OLEDs)have been extensively studied over the past three decades and are still attracting attention owing to their potential use in flexible and foldable displays.To achieve highly durabl...Organic light-emitting devices(OLEDs)have been extensively studied over the past three decades and are still attracting attention owing to their potential use in flexible and foldable displays.To achieve highly durable OLED displays for flexible devices,constitutive OLED materials need to be stable in various environments,including those with thermally and mechanically severe conditions.To this end,the present review aims to investigate the progress of OLED material research over the past two decades with respect to thermal stability.The literature survey is first conducted using the keyword“OLEDs”and then narrowed down to“high thermal stability materials for OLEDs.”The number of search results indicates that creating OLED materials with high thermal stability is a widely studied topic in the field of OLED research and has undergone an average growth rate of approximately 15%per year over the past two decades.In this review,the OLED materials used as core layers(ie,the hole injection and transport layers,emission layers,and electron injection and transport layers)are thoroughly analyzed,and the best representative materials are discussed in detail by summarizing their major thermal and electronic characteristics.Finally,several previous reports on flexible and foldable OLED displays are analyzed to determine the importance of the stability of their constitutive materials.展开更多
A sintered(Nd_(0.8)Pr_(0.2))_(30.7)FebalB_(0.98)Cu_(0.2) magnet with 3% intergranular Dy_(85)Ni_(15) additive is prepared to study the magnetic properties and thermal stability of the Nd-Fe-B magnet. T...A sintered(Nd_(0.8)Pr_(0.2))_(30.7)FebalB_(0.98)Cu_(0.2) magnet with 3% intergranular Dy_(85)Ni_(15) additive is prepared to study the magnetic properties and thermal stability of the Nd-Fe-B magnet. The results show that the magnet with or without additive obtains its optimum comprehensive magnetic properties at the sintering temperature of 1 030 ℃ and 1 040 ℃, respectively. The maximum coercivity of the magnet with additive reaches 15.16 k Oe, while that of the magnet without additive is just 11.88 k Oe. Further investigation on microstructure indicates that the grains of the magnet with additive form a modified "core shell" structure. Adding Dy_(85)Ni_(15) can significantly enhance the coercivity of Nd-Fe-B magnet and thus decrease its coercivity temperature coefficient.展开更多
A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet dur...A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet during the charging and discharging processes.The coupled problem is resolved by means of the finite element method(FEM)for the magneto-thermo-elastic behaviors and the Runge-Kutta method for the transient responses of the electrical circuits of the hybrid superconducting magnet system.The results reveal that the transient multi-physics responses of the insert NI coil primarily depend on the charging/discharging procedure of the hybrid magnet.Moreover,a reverse azimuthal current and a compressive hoop stress are induced in the insert NI coil during the charging process,while a forward azimuthal current and a tensile hoop stress are observed during the discharging process.The induced voltages in the insert NI coil can drive the currents flowing across the radial turns where the contact resistance exists.Therefore,it brings forth significant Joule heat,causing a temperature rise and a uniform distribution of this heat in the coil turns.Accordingly,a thermally/mechanically unstable or quenching event may be encountered when a high operating current is flowing in the insert NI coil.It is numerically predicted that a quick charging will induce a compressive hoop stress which may bring a risk of buckling instability in the coil,while a discharging will not.The simulations provide an insight of hybrid superconducting magnets under transient start-up or shutdown phases which are inevitably encountered in practical applications.展开更多
On the basis of literature, the author took a bond parameter function called 'centre atomic stability potential' (CASP for short) as the quantitative scale while making a quantitative investigation into the in...On the basis of literature, the author took a bond parameter function called 'centre atomic stability potential' (CASP for short) as the quantitative scale while making a quantitative investigation into the influence of ionic polarization on the thermal stability of some sulphates and nitrates, and calculated their decomposition temperatures. In this article, an attempt at further studies on a quantitative relationship between the展开更多
文摘Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s dimensional accuracy. This paper is a continuation of our earlier work, which aimed to analyze the effect of the internal temperature of a machine tool as the machine is put into operation and vary the external temperature, the machine floor temperature. Some experiments are carried out under controlled conditions to study how machine tool components get heated up and how this heating up affects the machine’s accuracy due to thermally induced deviations. Additionally, another angle is added by varying the machine floor temperature. The parameters mentioned above are explored in line with the overall thermal stability of the machine tool and its dimensional accuracy. A Robodrill CNC machine tool is used. The CNC was first soaked with thermal energy by gradually raising the machine floor temperature to a certain level before putting the machine in operation. The machine was monitored, and analytical methods were deplored to evaluate thermal stability. Secondly, the machine was run idle for some time under raised floor temperature before it was put into operation. Data was also collected and analyzed. It is observed that machine thermal stability can be achieved in several ways depending on how the above parameters are joggled. This paper, in conclusion, reinforces the idea of machine tool warm-up process in conjunction with a carefully analyzed and established machine floor temperature variation for the approximation of the machine tool’s thermally stability to map the long-time behavior of the machine tool.
基金Project supported by the Special Prophase Project on the National Basic Research Program of China(Grant No.2012CB326402)the National Natural Science Found of China(Grant No.61404085)+1 种基金the Innovation Program of Shanghai Municipal Education Commission,China(Grant No.13ZZ108)the Shanghai Science and Technology Commission,China(Grant No.13520502700)
文摘The Pt/Si/Ta/Ti multilayer metal contacts on 4H-Si C are annealed in Ar atmosphere at 600°C-1100°C by a rapid thermal processor(RTP). The long-term thermal stability is evaluated by aging the annealed contact at 600°C in air. The contact's properties are determined by current-voltage measurement, and the specific contact resistance is calculated based on the transmission line model(TLM). Transmission electron microscope(TEM) and energy-dispersive x-ray spectrometry(EDX) are used to characterize the interface morphology, thickness, and composition. The results reveal that a higher annealing temperature is favorable for the formation of an Ohmic contact with a lower specific contact resistance, and causes the rapid degradation of the Ohmic contact in the aging process.
基金supported by National Natural Science Foundation of China(Nos.52107232 and 52377026)China Postdoctoral Science Foundation(No.2021M702563)+2 种基金State Key Laboratory of Electrical Insulation and Power Equipment(No.EIPE22312)Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites)and Fundamental Research Funds for the Central Universities(No.xzy012024004).
文摘Future electronic devices toward high integration and miniaturization demand reliable operation of dielectric materials at high electric fields and elevated temperatures.However,the electrical deterioration caused by Joule heat generation remains a persistent challenge to overcome.Here,the solution-processed polyimide(PI)nanocomposites with unique two-dimensional(2D)alumina nanoplates are reported.Substantial improvements in the breakdown strength,charge–discharge efficiency and discharged energy density at elevated temperatures have been demonstrated in the composites,owing to simultaneously suppressed conduction loss and increased thermal conductivity upon the incorporation of 2D Al_(2)O_(3) nanofillers possessing excellent dielectric insulation and thermophysical properties.The predominance of Al_(2)O_(3) nanoplates in enhancing thermal stability and high-temperature capacitive performance over nanoparticles and nanowires is validated experimentally and is further rationalized via finite element simulations.Notably,the Al_(2)O_(3) nanoplates filled PI nanocomposite exhibits a hightemperature capability up to 200℃ and remarkable efficiency(e.g.≥95% at 200 MV/m)over a wide temperature range,which outperforms commercial dielectric polymers and rivals the state-of-the-art polyimide nanocomposites.
基金supported by Aviation Science Foundation of China(ASFC),No.00G51007.
文摘The phase transformation behavior, mechanical properties, and the thermal stability of CuAlAg alloy were studied and minor rare earth (0.1 wt pct La+Ce) was added to improve the mechanical property of the studied alloy. It was found that Ag addition in the CuAl binary alloy can improve the stability of martensitic transformation and high Al content leads to the disappearing of martensitic transformation. The tensile strength and strain of the Cu-10.6AI-5.8Ag (wt pct) alloy were measured to be 383.5 MPa and 0.86%, respectively. With rare earth addition, the tensile strain increased from 0.86% to 1.47%. The CuAlAg alloy did not exhibit martensitic transformation on the second heating process. Its poor thermal stability still needs to be improved.
基金supported by the National Natural Science Foundation of China(Grant No.51301075)the Project of Development and Reform Commission of Jilin Province,China(Grant No.2014Y136)
文摘Improving the thermal stability of diamond and other superhard materials has great significance in various applications. Here, we report the synthesis and characterization of bulk diamond–cBN–B4C–Si composites sintered at high pressure and high temperature(HPHT, 5.2 GPa, 1620–1680 K for 3–5 min). The results show that the diamond, cBN, B4C,BxSiC, SiO2 and amorphous carbon or a little surplus Si are present in the sintered samples. The onset oxidation temperature of 1673 K in the as-synthesized sample is much higher than that of diamond, cBN, and B4C. The high thermal stability is ascribed to the covalent bonds of B–C, C–N, and the solid-solution of BxSiC formed during the sintering process. The results obtained in this work may be useful in preparing superhard materials with high thermal stability.
文摘Based on IEC standards and Chinese national standards of sintered NdFeB materials, in the paper the hightemperature, room-temperature properties and thermal stability of about one hundred samples of NdFeB materials for electrical machines were measured and analyzed.These materials are produced by ten representative manufactories in China.Combined with the analysis results, the paper points out that the magnetic properties of sintered NdFeB materials for electrical machines should meet not only the specific values in standards, such as Br, (BH)max ,HcJ ,but also the requirement of temperature coefficients a (Br) , a (HcJ).
基金financially supported by the China Postdoctoral Science Foundation(2021M700396)the National Natural Science Foundation of China(52102206)the National Research Foundation of Republic of Korea(2021K2A9A2A06044652)。
文摘Cycle stability and thermal safety are critical to the commercialization of nickel-rich layered materials,yet whether there is a potential correlation between these two factors is still controversial. Herein, the relationship between the cycle stability and thermal stability of nickel-rich cathode materials have been systematically studied through five different calcination temperatures of Li[NiCoMn]O(NCM83) cathode materials. The research results confirm that the cycle stability and thermal safety of nickel-rich cathode materials do not necessarily show a positive correlation. Actually, with the calcination temperature elevated, the thermal stability of the NCM83 is enhanced, while the cycle stability is degraded. This opposite correlation is not commonly reported in previous literatures. In this work, systematical characterizations demonstrate that under the experimental conditions, the capacity retention of NCM83 is mainly determined by the Li/Ni cation disorder and H2-H3 irreversible phase transition,which is optimal at lower calcination temperature. Meanwhile, the thermal stability is mainly impacted by thermal expansion characteristics and interfacial stability of cathode material, and it is dramatically improved by the mechanical strength of the secondary particles reinforced at high calcinated temperature. This study provides some new insights on understanding and designing of the high-energy cathode materials with long cycle-life and superior safety.
基金Project supported by the National Key Research and Development Program(2021YFB3502801,2021YFB3502803)the National Natural Science Foundation of China(52001067)。
文摘A novel Nd-Fe-B type permanent magnet with excellent thermal stability was designed by Co replacing Fe in the main phase and the grain boundary phase.The remanence and coercivity temperature coefficient reach 0.058%/℃and 0.465%/℃in the te mperature range from 25 to 100℃,which are much lower than those of commercial Nd-Fe-B magnet.An enhanced Curie temperature is obtained for the novel magnet due to the Co substitution,which significantly improves the operating temperature.The microstructure result reveals that an amorphous phase exists in the intergranular grains which is probably responsible for the deterioration of intrinsic coercivity.This work can provide a reference for the design and optimization of components of sintered Nd-Fe-B magnets with excellent thermal stability.
基金supported by Natural Science Foundation of Guangxi,China(2022GXNSFBA03561219245084)Guangdong Basic and Applied Basic Research Foundation(2020A1515111004)National Natural Science Foundation of China(52032007,52072028),and Foundation for Guangxi Bagui scholars.
文摘Morphotropic phase boundary(MPB)plays a key role in tuning piezoelectric responses of ferroelectric ceramics.Here,Bi_(0.5)Na_(0.5)TiO_(3)modified BiFeO_(3)-BaTiO_(3)ternary solid solutions of 0.7BiFeO_(3)-(0.3-x)BaTiO_(3)-xBi_(0.5)Na_(0.5)TiO_(3)(referred to as BF-BT-xBNT,0.00≤x≤0.04)were prepared for lead-free piezo-electrics.All the ceramics exhibit an MPB with coexisting rhombohedral(R)and tetragonal(T)phases,and the R/T phase ratio decreases upon increasing x.The increment of BNT promotes the grain growth,lowers the leakage current and Curie temperature(TC),and gradually drives the ferroelectric to relaxor transition.Because of the MPB with appropriate R/T phase ratio,increased grain size and density,and decreased leakage current,the well-balanced performance between d_(33)=206 pC/N and TC=488℃is obtained in x=0.01 case.In addition,the further enhanced in-situ d_(33)=286e347 pC/N is obtained in BF-BT-xBNT ceramics along with the improved depolarization temperature T_(d)from 280 to 312℃,showing a potential application for lead-free piezoceramics at high temperature.
文摘A thermoelectric generation Stirling engine (TEG-Stirling engine) is discussed by employing a low temperature Stirling engine and the dissipative equation of motion derived from the method of thermomechanical dynamics (TMD). The results and mechanism of axial flux electromagnetic induction (AF-EMI) are applied to a low temperature Stirling engine, resulting in a TEG-Stirling engine. The method of TMD produced thermodynamically consistent and time-dependent physical quantities for the first time, such as internal energy ℰ(t), thermodynamic work Wth(t), the total entropy (heat dissipation) Qd(t)and measure or temperature of a nonequilibrium state T˜(t). The TMD analysis produced a lightweight mechanical system of TEG-Stirling engine which derives electric power from waste heat of temperature (40˚CT100˚C) by a thermoelectric conversion method. An optimal low rotational speed about 30θ′(t)/(2π)60(rpm) is found, applicable to devices for sustainable, clean energy technologies. The stability of a thermal state and angular rotations of TEG-Stirling engine are specifically shown by employing properties of nonequilibrium temperature T˜(t), which is also applied to study optimal fuel-injection and combustion timings of heat engines.
基金financial supports from the National Natural Science Foundation of China (No. 41572357)
文摘Polycrystalline diamond compacts(PDC), which are composed of diamond and WC/Co substrate, and synthesized at high pressure and high temperature(HPHT), are widely applied as the tooth of drilling bit. However, the thermal stability of PDC will be reduced when diamond transforms into graphite due to cobalt in PDC acting as a catalyst during the drilling work. In this study, a new three-layer structured PDC with enhanced thermal stability has been successfully synthesized at pressures of 5.5–7.0 GPa and temperatures of 1650–1750?C. In this structure, the diamond-Si C composite acts as the working layer,and the diamond-Si C-Co composite and WC/Co cements are as the intermediate layer and substrate,respectively. It is found that the initial oxidizing temperature of the three-layered PDC is enhanced up to820?C, which is significantly higher than that(~780?C) of the conventional PDC counterpart.
文摘The.thermal stability characteristics of kerosine-type fuels are examined using a heated-tube apparatus which allows independent control of fuel pressure,fuel temperature,tube-wall temperature and fuel flow rate.This method is identified simply as a“constant wall temperature method”.It is different from a previous widely used method,which is identified as a“constant heat flux method”.It is a single-pass system.Rate of deposition on the tube walls are measured by weighing the test tube before and after each test. For a fuel temperature of 250℃,it is found that deposition rates increase continuously with increase in tube- wall temperature.This finding contradicts the results of previous studies which had led to the conclusion that deposition rates increase with increase in wall temperature up to a certain value(around 650 K)beyond which any further increase in wall temperature causes the rate of deposition to decline. The present results show clearly that the constant wall temperature method is more suitable for assessing the thermal stability of gas turbine fuels.
基金National Research Foundation of Korea,Grant/Award Numbers:2018R1D1A3B07046214,2018R1D1A1B07051075,2018R1A6A1A03024962Ministry of Trade,Industry and Energy and Korea Institute for Advancement of Technology,Grant/Award Number:P0011262。
文摘Organic light-emitting devices(OLEDs)have been extensively studied over the past three decades and are still attracting attention owing to their potential use in flexible and foldable displays.To achieve highly durable OLED displays for flexible devices,constitutive OLED materials need to be stable in various environments,including those with thermally and mechanically severe conditions.To this end,the present review aims to investigate the progress of OLED material research over the past two decades with respect to thermal stability.The literature survey is first conducted using the keyword“OLEDs”and then narrowed down to“high thermal stability materials for OLEDs.”The number of search results indicates that creating OLED materials with high thermal stability is a widely studied topic in the field of OLED research and has undergone an average growth rate of approximately 15%per year over the past two decades.In this review,the OLED materials used as core layers(ie,the hole injection and transport layers,emission layers,and electron injection and transport layers)are thoroughly analyzed,and the best representative materials are discussed in detail by summarizing their major thermal and electronic characteristics.Finally,several previous reports on flexible and foldable OLED displays are analyzed to determine the importance of the stability of their constitutive materials.
基金Supported by the National Natural Science Foundation of China(51172168,51072139)the National Basic Research Program of China(973 Program)(2014DFB50130,2011CB612304)
文摘A sintered(Nd_(0.8)Pr_(0.2))_(30.7)FebalB_(0.98)Cu_(0.2) magnet with 3% intergranular Dy_(85)Ni_(15) additive is prepared to study the magnetic properties and thermal stability of the Nd-Fe-B magnet. The results show that the magnet with or without additive obtains its optimum comprehensive magnetic properties at the sintering temperature of 1 030 ℃ and 1 040 ℃, respectively. The maximum coercivity of the magnet with additive reaches 15.16 k Oe, while that of the magnet without additive is just 11.88 k Oe. Further investigation on microstructure indicates that the grains of the magnet with additive form a modified "core shell" structure. Adding Dy_(85)Ni_(15) can significantly enhance the coercivity of Nd-Fe-B magnet and thus decrease its coercivity temperature coefficient.
基金the National Natural Science Foundation of China(Nos.11932008 and 11672120)the Fundamental Research Funds for the Central Universities of China(No.lzujbky-2022-kb01)。
文摘A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet during the charging and discharging processes.The coupled problem is resolved by means of the finite element method(FEM)for the magneto-thermo-elastic behaviors and the Runge-Kutta method for the transient responses of the electrical circuits of the hybrid superconducting magnet system.The results reveal that the transient multi-physics responses of the insert NI coil primarily depend on the charging/discharging procedure of the hybrid magnet.Moreover,a reverse azimuthal current and a compressive hoop stress are induced in the insert NI coil during the charging process,while a forward azimuthal current and a tensile hoop stress are observed during the discharging process.The induced voltages in the insert NI coil can drive the currents flowing across the radial turns where the contact resistance exists.Therefore,it brings forth significant Joule heat,causing a temperature rise and a uniform distribution of this heat in the coil turns.Accordingly,a thermally/mechanically unstable or quenching event may be encountered when a high operating current is flowing in the insert NI coil.It is numerically predicted that a quick charging will induce a compressive hoop stress which may bring a risk of buckling instability in the coil,while a discharging will not.The simulations provide an insight of hybrid superconducting magnets under transient start-up or shutdown phases which are inevitably encountered in practical applications.
文摘On the basis of literature, the author took a bond parameter function called 'centre atomic stability potential' (CASP for short) as the quantitative scale while making a quantitative investigation into the influence of ionic polarization on the thermal stability of some sulphates and nitrates, and calculated their decomposition temperatures. In this article, an attempt at further studies on a quantitative relationship between the