期刊文献+
共找到730篇文章
< 1 2 37 >
每页显示 20 50 100
Significantly enhanced thermal stability of HMX by phase-transition lysozyme coating
1
作者 Jiahui Liu Congmei Lin +3 位作者 Jianhu Zhang Chengcheng Zeng Zhijian Yang Fude Nie 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期60-68,共9页
A new robust bio-inspired route by using lysozyme aqueous solution for surface modification on 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)was described in this paper.HMX crystals were coated by in situ phase transitio... A new robust bio-inspired route by using lysozyme aqueous solution for surface modification on 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)was described in this paper.HMX crystals were coated by in situ phase transition of lysozyme(PTL)molecules.The HMX decorated by PTL was characterized by SEM,XRD,FTIR and XPS,demonstrating a dense core-shell coating layer.The coverage of lysozyme on HMX crystal was calculated by the ratio of sulfur content.The surface coverage increased from 60.5% to 93.5% when the content of PTL was changed from 0.5 wt% to 2.0 wt%,indicating efficient coating.The thermal stability of HMX was investigated by in situ XRD and DSC.The thermal phase transition temperature of HMX(β to δ phase)was delayed by 42℃ with 2.0 wt% PTL coating,which prevented HMX from thermal damage and sensitivity by the effect of PTL coating.After heating at 215℃,large cracks appeared in the naked HMX crystal,while the PTL coated HMX still maintained intact,with the impact energy of HMX dropped dramatically from 5 J to 2 J.However,the impact energy of HMX with 1.0 wt% and 2.0 wt% coating content(HMX@PTL-1.0 and HMX@PTL-2.0)was unchanged(5 J).Present results potentially enable large-scale fabrication of polymorphic energetic materials with outstanding thermal stability by novel lysozyme coating. 展开更多
关键词 HMX LYSOZYME Phase transition thermal stability Sensitivity
下载PDF
Preparation and Thermal Stability of AlMoON Based Solar Selective Absorption Coating
2
作者 闵捷 YUAN Wenxu +5 位作者 CHEN Yufei LAN Yapeng YAN Mengdi LIU Hanze CHENG Xudong 代路 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期854-862,共9页
AlMoON based solar selective absorption coatings were deposited on stainless steel substrate by magnetron sputtering.The coatings included infrared reflection layer Mo,absorption layer AlMoN,absorption layer AlMoON an... AlMoON based solar selective absorption coatings were deposited on stainless steel substrate by magnetron sputtering.The coatings included infrared reflection layer Mo,absorption layer AlMoN,absorption layer AlMoON and antireflection layer AlMoO from bottom to top.The surface of the deposited coatings is flat without obvious defects.The absorptivity and emissivity are 0.896 and 0.09,respectively,and the quality factor is 9.96.After heat treatment at 500℃-36 h,the surface roughness of the coating increases,a small number of cracks and other defects appear,and the broken part is still attached to the coating surface.A certain degree of element diffusion occurs in the coatings,resulting in the decline of the optical properties of the coatings.The absorptivity and emissivity are 0.883 and 0.131,respectively,the quality factor is 7.06,and the PC value is 0.0335.The coatings do not fail under this condition and have certain thermal stability. 展开更多
关键词 AlMoON COATING PREPARATION thermal stability
下载PDF
High-strength and thermally stable TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy fabricated via selective laser melting
3
作者 Jiang Yu Yaoxiang Geng +6 位作者 Yongkang Chen Xiao Wang Zhijie Zhang Hao Tang Junhua Xu Hongbo Ju Dongpeng Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2221-2232,共12页
To increase the processability and plasticity of the selective laser melting(SLM)fabricated Al-Mn-Mg-Er-Zr alloys,a novel TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy with a mixture of Al-Mn-Mg-Er-Zr and nano-TiB_(2) powders... To increase the processability and plasticity of the selective laser melting(SLM)fabricated Al-Mn-Mg-Er-Zr alloys,a novel TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy with a mixture of Al-Mn-Mg-Er-Zr and nano-TiB_(2) powders was fabricated by SLM.The pro-cessability,microstructure,and mechanical properties of the alloy were systematically investigated by density measurement,microstruc-ture characterization,and mechanical properties testing.The alloys fabricated at 250 W displayed higher relative densities due to a uni-formly smooth top surface and appropriate laser energy input.The maximum relative density value of the alloy reached(99.7±0.1)%,demonstrating good processability.The alloy exhibited a duplex grain microstructure consisting of columnar regions primarily and equiaxed regions with TiB_(2),Al6Mn,and Al3Er phases distributed along the grain boundaries.After directly aging treatment at a high tem-perature of 400℃,the strength of the SLM-fabricated TiB_(2)/Al-Mn-Mg-Er-Zr alloy increased due to the precipitation of the secondary Al6Mn phases.The maximum yield strength and ultimate tensile strength of the aging alloy were measured to be(374±1)and(512±13)MPa,respectively.The SLM-fabricated TiB_(2)/Al-Mn-Mg-Er-Zr alloy demonstrates exceptional strength and thermal stability due to the synergistic effects of the inhibition of grain growth,the incorporation of TiB_(2) nanoparticles,and the precipitation of secondary Al6Mn nanoparticles. 展开更多
关键词 selective laser melting aluminum alloy PROCESSABILITY mechanical properties thermal stability
下载PDF
Construction of core@double-shell structured energetic composites with simultaneously enhanced thermal stability and safety performance
4
作者 Peng Wang Wen Qian +6 位作者 Ruolei Zhong Fangfang He Xin Li Jie Chen Li Meng Yinshuang Sun Guansong He 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期134-142,共9页
The poor thermal stability and high sensitivity severely hinder the practical application of hexanitrohexaazaisowurtzitane(CL-20).Herein,a kind of novel core@double-shell CL-20 based energetic composites were fabricat... The poor thermal stability and high sensitivity severely hinder the practical application of hexanitrohexaazaisowurtzitane(CL-20).Herein,a kind of novel core@double-shell CL-20 based energetic composites were fabricated to address the above issues.The coordination complexes which consist of natural polyphenol tannic acid(TA) and Fe~Ⅲ were chosen to construct the inner shell,while the graphene sheets were used to build the outer shell.The resulting CL-20/TA-Fe~Ⅲ/graphene composites exhibited simultaneously improved thermal stability and safety performance with only 1 wt% double-shell content,which should be ascribed to the intense physical encapsulation effect from inner shell combined with the desensitization effect of carbon nano-materials from outer shell.The phase transition(ε to γ) temperature increased from 173.70 ℃ of pure CL-20 to 191.87℃ of CL-20/TA-Fe~Ⅲ/graphene composites.Meanwhile,the characteristic drop height(H_(50)) dramatically increased from 14.7 cm of pure CL-20 to112.8 cm of CL-20/TA-Fe~Ⅲ/graphene composites,indicating much superior safety performance after the construction of the double-shell structure.In general,this work has provided an effective and versatile strategy to conquer the thermal stability and safety issues of CL-20 and contributes to the future application of high energy density energetic materials. 展开更多
关键词 CL-20 Double-shell structure thermal stability Safety performance Tannic acid Graphene sheets
下载PDF
Formation of Natural Melanin/TiO_(2) Nanostructure Hybrids with Enhanced Optical,Thermal and Magnetic Properties as a Soft Material
5
作者 Saja Algessair Nawal Madkhali 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期613-620,共8页
The natural Melanin/TiO_(2) was synthesized by the use of ultrasonication under UV radiation.The influence of natural melanin on the structural,optical and thermal properties of TiO_(2) nanoparticles was investigated ... The natural Melanin/TiO_(2) was synthesized by the use of ultrasonication under UV radiation.The influence of natural melanin on the structural,optical and thermal properties of TiO_(2) nanoparticles was investigated by using Fourier transform infrared spectroscopy,thermogravimetric analysis and UV-Vis spectroscopy.It was observed that incorporating natural melanin on TiO_(2) nanoparticles(TiO_(2)-Mel)occurred at 2.01 eV with a low value of Urbach energy around 100 meV indicating improvement in the crystalline structure.Magnetic measurement at room temperature showed diamagnetic behavior.Furthermore,thermal results showed that TiO_(2)-Mel is stable even at temperatures up to 400℃.According to the results obtained by the thermal stability of melanin with titanium dioxide,it can be a good candidate in many applications such as solar cells and optoelectronics. 展开更多
关键词 natural melanin/TiO_(2) thermal stability OPTOELECTRONIC NANOSTRUCTURE UV radiation
下载PDF
Thermal Stability and Degeneration Behavior of Solar Selective Absorber Based on WTi-Al_(2)O_(3)Cermet
6
作者 WANG Xiaobo FANG Wei +2 位作者 MA Yuchao CHENG Xudong LI Kewei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1555-1564,共10页
A WTi-Al_(2)O_(3)cermet-based solar selective absorber was prepared to investigate the atomic diffusion induced spectral selectivity degeneration.The as-deposited coating exhibits superior absorptance(0.934)and low th... A WTi-Al_(2)O_(3)cermet-based solar selective absorber was prepared to investigate the atomic diffusion induced spectral selectivity degeneration.The as-deposited coating exhibits superior absorptance(0.934)and low thermal emittance(0.098),as well as excellent thermal stability with a selectivity of 0.900/0.07 even after annealing at 923 K for 400 h in Ar ambient.However,the multilayer coating failed after being subjected to annealing at 923 K for 400 h in an air environment,as indicated by a decrease in solar absorptance to 0.912 and an increase in thermal emittance to 0.634.The microstructure characterizations reveal that the annealed coating exhibits a columnar morphology along the vertical direction of the substrate.The presence of abundant grain boundaries in the multilayer coating promotes the outward diffusion of Cr and Mn atoms in the stainless-steel substrate.The Mn atoms,in particular,possess the capability to migrate towards the surface of the coating and undergo an oxidation reaction with oxygen,facilitating the formation of a thick Mn_(2)O_(3)layer.The roughness of the coating surface was significantly increased in this case,adversely affecting solar absorptance due to amplified sunlight reflection.In addition,the rocketing of thermal emittance is attributed to the destabilization of W infrared reflective layer during the annealing.These findings highlight the importance of considering the outward diffusion of Mn and Cr elements in the stainless-steel substrate when optimizing solar selective absorbers. 展开更多
关键词 solar selective absorber thermal stability spectral selectivity optical properties
下载PDF
The Effect of Uncaria gambir on Optical Properties and Thermal Stability of CNF/PVA Biocomposite Films
7
作者 Remon Lapisa Anna Niska Fauza +6 位作者 Dieter Rahmadiawan Krismadinata Dori Yuvenda Randi Purnama Putra Waskito Nandy Putra Hairul Abral 《Journal of Renewable Materials》 EI CAS 2024年第9期1593-1603,共11页
Cellulose-based film has gained popularity as an alternative to synthetic polymers due to its outstanding properties.Among all types of cellulose materials available,cellulose nanofiber(CNF)has great potential to be u... Cellulose-based film has gained popularity as an alternative to synthetic polymers due to its outstanding properties.Among all types of cellulose materials available,cellulose nanofiber(CNF)has great potential to be utilized in a diverse range of applications,including as a film material.In this study,CNF biocomposite film was prepared by using polyvinyl alcohol(PVA)as a matrix and Uncaria gambir extract as a filler.This study aims to investigate the effect of Uncaria gambir extract on the optical properties and thermal stability of the produced film.The formation of the CNF biocomposite films was confirmed using Fourier Transform Infrared Spectroscopy,their transmittance characteristics were measured using UV-Vis spectroscopy and a transmittance meter,while their reflectance was determined using a reflectance meter.The results revealed that the addition of Uncaria gambir extract to the CNF biocomposite film improved its UV-shielding properties,as indicated by the lower percentage of transmittance in the visible region,10%–70%.In addition,its reflectance increased to 10.6%compared to the CNF film without the addition of Uncaria gambir extract.Furthermore,the thermal stability of the CNF biocomposite film with the addition of Uncaria gambir extract improved to around 400℃–500℃.In conclusion,the results showed that CNF biocomposite film prepared by adding Uncaria gambir extract can be a promising candidate for optical and thermal management materials. 展开更多
关键词 Cellulose nanofiber biocomposite film optical properties Uncaria gambir thermal stability
下载PDF
Research progress on classification,source,application of phytosterol esters,and their thermal oxidation stability
8
作者 Dami Li Shangde Sun Jingnan Chen 《Grain & Oil Science and Technology》 CAS 2024年第1期1-11,共11页
Phytosterol esters can effectively decrease serum cholesterol concentration in the human body and prevent cardio-cerebrovascular diseases.It was found that phytosterol esters exhibited better solubility and bioavailab... Phytosterol esters can effectively decrease serum cholesterol concentration in the human body and prevent cardio-cerebrovascular diseases.It was found that phytosterol esters exhibited better solubility and bioavailability than free phytosterols.In recent years,phytosterol esters have attracted increasing attention.However,during food processing,phytosterol esters are susceptible to degradation at high temperatures,resulting in certain losses and formation of potentially harmful substances for humans.This paper reviews the relevant literatures and updates on the thermal oxidation stability of phytosterol esters in recent years from the following aspects:(i)Sources,physiological activities,and applications of phytosterol esters;(ii)Oxidation mechanism of phytosterol esters;(iii)Effects of phytosterols species,the volume of addition,food matrix,heating temperature and time,and antioxidants on the thermal loss and oxidation stability of phytosterol esters.The research progress on the safety of phytosterol esters is also discussed in detail.Additionally,the prospects for future research are highlighted. 展开更多
关键词 thermal stability Loss rate Oxidation mechanism Phytosterol esters
下载PDF
Further Analysis of Machine Tool Dimensional Accuracy and Thermal Stability under Varying Floor Temperature
9
作者 Joel Arumun Shadrack Abiola 《World Journal of Engineering and Technology》 2024年第2期258-273,共16页
Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s d... Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s dimensional accuracy. This paper is a continuation of our earlier work, which aimed to analyze the effect of the internal temperature of a machine tool as the machine is put into operation and vary the external temperature, the machine floor temperature. Some experiments are carried out under controlled conditions to study how machine tool components get heated up and how this heating up affects the machine’s accuracy due to thermally induced deviations. Additionally, another angle is added by varying the machine floor temperature. The parameters mentioned above are explored in line with the overall thermal stability of the machine tool and its dimensional accuracy. A Robodrill CNC machine tool is used. The CNC was first soaked with thermal energy by gradually raising the machine floor temperature to a certain level before putting the machine in operation. The machine was monitored, and analytical methods were deplored to evaluate thermal stability. Secondly, the machine was run idle for some time under raised floor temperature before it was put into operation. Data was also collected and analyzed. It is observed that machine thermal stability can be achieved in several ways depending on how the above parameters are joggled. This paper, in conclusion, reinforces the idea of machine tool warm-up process in conjunction with a carefully analyzed and established machine floor temperature variation for the approximation of the machine tool’s thermally stability to map the long-time behavior of the machine tool. 展开更多
关键词 Dimensional Accuracy Machine Tool Machine Floor thermal Stability TEMPERATURE thermal Deviation
下载PDF
Development of Morus alba Reinforced Poly-Lactic Acid with Elevated Mechanical and Thermal Properties
10
作者 Girish Kumar Reddy Madda Jens Schuster Yousuf Pasha Shaik 《Materials Sciences and Applications》 2024年第7期186-200,共15页
This research investigates the mechanical and thermal properties of Morus alba combined with polylactic acid in comparison with other natural fibers. The study uses three different fiber and PLA compositions - 20%, 30... This research investigates the mechanical and thermal properties of Morus alba combined with polylactic acid in comparison with other natural fibers. The study uses three different fiber and PLA compositions - 20%, 30%, and 40% respectively - to produce composite materials. In addition, another composite with the same fiber volume is treated with a 4% NaOH solution to improve mechanical properties. The composites are processed by twin-screw extrusion, granulation, and injection molding. Tensile strength measurements of raw fibers and NaOH-treated fibers were carried out using a single-fiber tensile test with a gauge length of 40 mm. It was observed that the NaOH surface treatment increases the resistance against tensile loading and exhibited improved properties for raw fiber strands. The diameter of the fibers was measured using optical microscopy. During this research, flexural tests, impact tests, differential scanning calorimetry (DSC), and heat deflection temperature measurements (HDT) were conducted to evaluate the mechanical and thermal properties of the developed composite samples. The results indicate that the mechanical properties of NaOH-treated Morus alba-reinforced polylactic acid outperform both virgin PLA samples and untreated Morus alba samples. 展开更多
关键词 Morus Alba Fiber (MAF) White Mulberry Polylactic Acid (PLA) Sodium Hydroxide (NaOH) Solution Single Fiber Tensile Test thermal Stability Optical Microscopy
下载PDF
Ionic liquid electrolytes for sodium-ion batteries to control thermal runaway 被引量:4
11
作者 Keith Sirengo Aswathy Babu +1 位作者 Barry Brennan Suresh C.Pillai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期321-338,I0008,共19页
Sodium-ion batteries are expected to be more affordable for stationary applications than lithium-ion batteries,while still offering sufficient energy density and operational capacity to power a significant segment of ... Sodium-ion batteries are expected to be more affordable for stationary applications than lithium-ion batteries,while still offering sufficient energy density and operational capacity to power a significant segment of the battery market.Despite this,thermal runaway explosions associated with organic electrolytes have led to concerns regarding the safety of sodium-ion batteries.Among electrolytes,ionic liquids are promising because they have negligible vapor pressure and show high thermal and electrochemical stability.This review discusses the safety contributions of these electrolyte properties for high-temperature applications.The ionic liquids provide thermal stability while at the same time promoting high-voltage window battery operations.Moreover,apart from cycle stability,there is an additional safety feature attributed to modified ultra-concentrated ionic liquid electrolytes.Concerning these contributions,the following have been discussed,heat sources and thermal runaway mechanisms,thermal stability,the electrochemical decomposition mechanism of stable cations,and the ionic transport mechanism of ultra-concentrated ionic liquid electrolytes.In addition,the contributions of hybrid electrolyte systems consisting of ionic liquids with either organic carbonate or polymers are also discussed.The thermal stability of ionic liquids is found to be the main contributor to cell safety and cycle stability.For high-temperature applications where electrolyte safety,capacity,and cycle stability are important,highly concentrated ionic liquid electrolyte systems are potential solutions for sodium-ion battery applications. 展开更多
关键词 thermal stability Ionic liquids Sodium-ion batteries Cycle stability Ionic conductivity
下载PDF
Intrinsic thermal stability of inverted perovskite solar cells based on electrochemical deposited PEDOT 被引量:2
12
作者 Congtan Zhu Jing Gao +2 位作者 Tian Chen Xueyi Guo Ying Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期445-453,I0011,共10页
Thermal stability of perovskite materials is an issue impairing the long-term operation of inverted perovskite solar cells(PSCs). Herein, the thermal attenuation mechanism of the MAPb I3films that deposited on two dif... Thermal stability of perovskite materials is an issue impairing the long-term operation of inverted perovskite solar cells(PSCs). Herein, the thermal attenuation mechanism of the MAPb I3films that deposited on two different hole transport layers(HTL), poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS) and poly(3,4-ethylenedioxythiophene)(PEDOT), is comprehensively studied by applying a heat treatment at 85℃. The thermal stress causes the mutual ions migration of I, Pb and Ag through the device, which leads to the thermal decomposition of perovskite to form Pb I2. Interestingly, we find that I ions tend to migrate more towards electron transport layer(ETL) during heating, which is different with the observation of I ions migration towards HTL when bias pressure is applied. Moreover, the use of electrochemical deposited PEDOT as HTL significantly decreases the defect density of MAPb I3films as compared to PEDOT:PSS supported one. The electrochemical deposition PEDOT has good carrier mobility and low acidity, which avoids the drawbacks of aqueous PEDOT:PSS. Accordingly, the inverted PSCs based on PEDOT show superior durability than that with PEDOT:PSS. Our results reveal detailed degradation routes of a new kind of inverted PSCs which can contribute to the understanding of the failure of thermal-aged inverted PSCs. 展开更多
关键词 Inverted perovskite solarcells CH_(3)NH_(3)Pbl_(3) thermal stability Electrochemical deposition PEDOT
下载PDF
Thermal and ignition properties of hexanitrostilbene(HNS) microspheres prepared by droplet microfluidics 被引量:1
13
作者 Rui-shan Han Fei-peng Lu +6 位作者 Fang Zhang Yan-lan Wang Mi Zhou Guo-sheng Qin Jian-hua Chen Hai-fu Wang En-yi Chu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期166-173,共8页
HNS-IV(Hexanitrostilbene-IV) is the main charge of the exploding foil initiators(EFI), and the microstructure of the HNS will directly affect its density, flowability, sensitivity, and stability. HNS microspheres were... HNS-IV(Hexanitrostilbene-IV) is the main charge of the exploding foil initiators(EFI), and the microstructure of the HNS will directly affect its density, flowability, sensitivity, and stability. HNS microspheres were prepared using droplet microfluidics, and the particle size, morphology, specific surface area, thermal performance, and ignition threshold of the HNS microspheres were characterized and tested. The results shown that the prepared HNS microspheres have high sphericity, with an average particle size of 20.52 μm(coefficient of variation less than 0.2), and a specific surface area of 21.62 m^(2)/g(6.87 m^(2)/g higher than the raw material). Without changing the crystal structure and thermal stability of HNS-IV, this method significantly enhances the sensitivity of HNS-IV to short pulses and reduces the ignition threshold of the slapper detonator to below 1000 V. This will contribute to the miniaturization and low cost of EFI. 展开更多
关键词 MICROFLUIDICS HNS microspheres thermal stability Ignition threshold
下载PDF
Thermal–moisture dynamics and thermal stability of active layer in response to wet/dry conditions in the central region of the Qinghai–Tibet Plateau,China 被引量:1
14
作者 MingLi Zhang ZhiXiong Zhou +3 位作者 Zhi Wen FengXi Zhou Zhao Ma BingBing Lei 《Research in Cold and Arid Regions》 CSCD 2023年第1期27-38,共12页
The amount of rainfall varies unevenly in different regions of the Qinghai-Tibet Plateau, with some regions becoming wetter and others drier. Precipitation has an important impact on the process of surface energy bala... The amount of rainfall varies unevenly in different regions of the Qinghai-Tibet Plateau, with some regions becoming wetter and others drier. Precipitation has an important impact on the process of surface energy balance and the energy-water transfer within soils. To clarify the thermal-moisture dynamics and thermal stability of the active layer in permafrost regions under wet/dry conditions, the verified water-vapour-heat coupling model was used. Changes in the surface energy balance, energy-water transfer within the soil, and thickness of the active layer were quantitatively analyzed. The results demonstrate that rainfall changes significantly affect the Bowen ratio, which in turn affects surface energy exchange. Under wet/dry conditions, there is a positive correlation between rainfall and liquid water flux under the hydraulic gradient;water vapour migration is the main form under the temperature gradient, which indicates that the influence of water vapour migration on thermalmoisture dynamics of the active layer cannot be neglected. Concurrently, regardless of wet or dry conditions,disturbance of the heat transport by conduction caused by rainfall is stronger than that of convection by liquid water. In addition, when rainfall decreases by 1.5 times(212 mm) and increases by 1.5 times(477 mm), the thickness of the active layer increases by 0.12 m and decreases by 0.21 m, respectively. The results show that dry conditions are not conducive to the preservation of frozen soil;however, wet conditions are conducive to the preservation of frozen soil, although there is a threshold value. When this threshold value is exceeded, rainfall is unfavourable for the development of frozen soil. 展开更多
关键词 Active layer Wet/dry conditions Qinghai-Tibet Plateau(QTP) thermal-moisture dynamics Permafrost thermal stability Numerical modelling
下载PDF
Exceptional thermal stability and enhanced hardness in a nanostructured Mg-Gd-Y-Zn-Zr alloy processed by high pressure torsion
15
作者 Wanting Sun Yang He +5 位作者 Xiaoguang Qiao Xiaojun Zhao Houwen Chen Nong Gao Marco J.Starink Mingyi Zheng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4589-4602,共14页
A Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr(wt.%) alloy is processed by solution treatment and high pressure torsion(HPT) at room temperature to produce a nanostructured light material with high hardness. The stability of this alloy ... A Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr(wt.%) alloy is processed by solution treatment and high pressure torsion(HPT) at room temperature to produce a nanostructured light material with high hardness. The stability of this alloy is subsequently tested through isochronal annealing for 0.5 h at 373 K to 673 K. The results reveal a thermal stability that is vastly superior to that of conventional Mg-based alloys processed by severe plastic deformation: the grain size remains at around 50 nm on heating to 573 K, and as the temperature is increased to 673 K,grain growth is restricted to within 500 nm. The stability of grain refinement of the present alloy/processing combination allowing grain size to be limited to 55 nm after exposure at 573 K, appears to be nearly one order of magnitude better than for the other SPD processed Mg-RE type alloys, and 2 orders of magnitude better than those of SPD processed RE-free Mg alloys. This superior thermal stability is attributed to formation of co-clusters near and segregation at grain boundaries, which cause a thermodynamic stabilization of grain size, as well as formation of β-Mg_(5)RE equilibrium phase at grain boundaries, which impede grain growth by the Zener pinning effect. The hardness of the nanostructured Mg-Gd-Y-Zn-Zr alloy increases with increasing annealing temperature up to 573 K, which is quite different from the other SPD-processed Mg-based alloys. The high hardness of 136 HV after annealing at 573 K is mainly due to solute segregation and solute clustering at or near grain boundaries. 展开更多
关键词 Mg-RE alloy High pressure torsion thermal stability Grain growth Solute segregation Phase transformation
下载PDF
Optimizing the morphology of all-polymer solar cells for enhanced photovoltaic performance and thermal stability
16
作者 Kang An Wenkai Zhong +8 位作者 Chunguang Zhu Feng Peng Lei Xu Zhiwei Lin Lei Wang Cheng Zhou Lei Ying Ning Li Fei Huang 《Journal of Semiconductors》 EI CAS CSCD 2023年第5期34-41,共8页
Due to the complicated film formation kinetics, morphology control remains a major challenge for the development of efficient and stable all-polymer solar cells(all-PSCs). To overcome this obstacle, the sequential dep... Due to the complicated film formation kinetics, morphology control remains a major challenge for the development of efficient and stable all-polymer solar cells(all-PSCs). To overcome this obstacle, the sequential deposition method is used to fabricate the photoactive layers of all-PSCs comprising a polymer donor PTzBI-oF and a polymer acceptor PS1. The film morphology can be manipulated by incorporating amounts of a dibenzyl ether additive into the PS1 layer. Detailed morphology investigations by grazing incidence wide-angle X-ray scattering and a transmission electron microscope reveal that the combination merits of sequential deposition and DBE additive can render favorable crystalline properties as well as phase separation for PTzBI-oF:PS1 blends. Consequently, the optimized all-PSCs delivered an enhanced power conversion efficiency(PCE) of 15.21%along with improved carrier extraction and suppressed charge recombination. More importantly, the optimized all-PSCs remain over 90% of their initial PCEs under continuous thermal stress at 65 °C for over 500 h. This work validates that control over microstructure morphology via a sequential deposition process is a promising strategy for fabricating highly efficient and stable all-PSCs. 展开更多
关键词 MORPHOLOGY all-polymer solar cells thermal stability sequential deposition
下载PDF
17.13% Efficiency and Superior Thermal Stability of Organic Solar Cells Based on a Comb-Shape Active Blend
17
作者 Zhipeng Yin Qingjie Wang +3 位作者 Huan Zhao Haiqiao Wang Ning Li Weijie Song 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期266-272,共7页
With rapid progress,organic solar cells(OSCs)are getting closer to the target of real application.However,the stability issue is still one of the biggest challenges that have to be resolved.Especially,the thermal stab... With rapid progress,organic solar cells(OSCs)are getting closer to the target of real application.However,the stability issue is still one of the biggest challenges that have to be resolved.Especially,the thermal stability of OSCs is far from meeting the requirements of the application.Here,based on the layer-by-layer(LBL)process and by utilizing the dissolubility nature of solvent and materials,binary inverted OSCs(ITO/AZO/PM6/BTP-eC9/MoO3/Ag)with comb shape active morphology are fabricated.High efficiency of 17.13%and simultaneous superior thermal stability(with 93%of initial efficiency retained in~9:00 h under 85℃in N_(2))are demonstrated,showing superior stability to reference cells.The enhancements are attributed to the formed optimal comb shape of the active layer,which could provide a larger D/A interface,thus more charge carriers,render the active blend a more stable morphology,and protect the electrode by impeding ion's migration and corrosion.To the best of our knowledge,this is the best thermal stability of binary OSCs reported in the literature,especially when considering the high efficiency of over 17%. 展开更多
关键词 comb-shape blend high efficiency organic solar cell thermal stability
下载PDF
Effects of Conductive Carbon Black on Thermal and Electrical Properties of Barium Titanate/Polyvinylidene Fluoride Composites for Road Application
18
作者 Zhenguo Wang Lenan Wang +2 位作者 Yejing Meng Yong Wen Jianzhong Pei 《Journal of Renewable Materials》 SCIE EI 2023年第5期2469-2489,共21页
In the field of roads,due to the effect of vehicle loads,piezoelectric materials under the road surface can convert mechanical vibration into electrical energy,which can be further used in road facilities such as traf... In the field of roads,due to the effect of vehicle loads,piezoelectric materials under the road surface can convert mechanical vibration into electrical energy,which can be further used in road facilities such as traffic signals and street lamps.The barium titanate/polyvinylidene fluoride(BaTiO_(3)/PVDF)composite,the most common hybrid ceramic-polymer system,was widely used in various fields because the composite combines the good dielectric property of ceramic materials with the good flexibility of PVDF material.Previous studies have found that conductive particles can further improve the dielectric and piezoelectric properties of other composites.However,few studies have investigated the effect of conductive carbon black on the dielectric and piezoelectric properties of BaTiO_(3)/PVDF composites.In this study,BaTiO_(3)/PVDF/conductive carbon black composites were prepared with various conductive carbon black contents based on the optimum ratio of BaTiO_(3)to PVDF.The effects of conductive carbon black content on the morphologies,thermal performance,conductivities,dielectric properties,and piezoelectric properties of the BaTiO_(3)/PVDF/conductive carbon black composites were then investigated.The addition of conductive carbon black greatly enhances the conductivities,dielectric properties,and piezoelectric properties of the BaTiO_(3)/PVDF/conductive carbon black composites,especially when the carbon black content is 0.8%by weight of PVDF.Additionally,the conductive carbon black does not have an obvious effect on the morphologies and thermal stabilities of BaTiO_(3)/PVDF/conductive carbon black composites. 展开更多
关键词 Dielectric property piezoelectric property CONDUCTIVITY thermal stability BaTiO_(3)/PVDF composites conductive carbon black
下载PDF
Study of Thermal,Phase Morphological and Mechanical Properties of Poly(L-lactide)-b-Poly(ethylene glycol)-b-Poly(L-lactide)/Poly(ethylene glycol)Blend Bioplastics
19
作者 Yodthong Baimark Theeraphol Phromsopha 《Journal of Renewable Materials》 SCIE EI 2023年第4期1881-1894,共14页
A poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide)(PLLA-PEG-PLLA)block copolymer has great potential for use as a flexible bioplastic.Highly flexible bioplastics are required for flexible packaging applicatio... A poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide)(PLLA-PEG-PLLA)block copolymer has great potential for use as a flexible bioplastic.Highly flexible bioplastics are required for flexible packaging applications.In this work,a PEG was incorporated into block copolymer as a plasticizer by solvent casting.PLLA-PEG-PLLA/PEG blends with different blend ratios were prepared,and the plasticizing effect and miscibility of PEG in block copolymer were intensively investigated compared to PLLA/PEG blends.The results indicated that the PEG was an effective plasticizer for the block copolymer.The blending of PEG decreased glass-transition temperature and accelerated the crystallization of both the PLLA and PLLA-PEG-PLLA matrices.The PEG was completely miscible when blended with block copolymer and it improved thermal stability of the block copolymer matrix but not of the PLLA matrix.Film extensibility of PLLA-PEG-PLLA/PEG blends steadily increased as the PEG ratio increased.These non-toxic and highly flexible PLLA-PEG-PLLA/PEG bioplastics are promising candidates for several applications such as biomedical devices,tissue scaffolds and packaging materials. 展开更多
关键词 Poly(lactic acid) poly(ethylene glycol) polymer blends phase morphology thermal stability
下载PDF
Thermal stability analysis of a satellite-borne optical bench based on quasi-kinematic support
20
作者 Huan Zhang ChunYu Yu +3 位作者 Le Suo WenBo Luo Ding Yuan JiaMing Ou 《Earth and Planetary Physics》 EI CSCD 2023年第1期119-124,共6页
Macao Science Satellite-1(known as MSS-1)is a low-inclination mission that will be launched at the beginning of 2023.An optical bench is used for accessing high-precision strength and direction measurements of the mag... Macao Science Satellite-1(known as MSS-1)is a low-inclination mission that will be launched at the beginning of 2023.An optical bench is used for accessing high-precision strength and direction measurements of the magnetic field.In this paper,we present a thermal stability design for the optical bench based on quasi-kinematic support by kinematic hinges on the MSS-1.The change in angles with the finite element method(FEM)model modified by thermal deformation test data is analyzed.The robustness of the structure is also investigated via the Monte Carlo method.Two main results are obtained.First,the peak-to-peak value(Vp-p)of the inter-boresight angle is at most 1.24″,and the Vp-p of the inter-boresight angle modification and analysis is no more than 3.13″,both of which are better than those on the Swarm satellites in orbit.Second,the 90°fibers of the carbon-reinforced arm need to be strictly controlled during the technological process. 展开更多
关键词 thermal stability finite element method Monte Carlo
下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部