The investigation of electrical properties in alexandrite (BeAl<sub>2</sub>O<sub>4</sub>:Cr<sup>3+</sup>) in synthetic and natural forms is presented in this paper. Alexandrite is a...The investigation of electrical properties in alexandrite (BeAl<sub>2</sub>O<sub>4</sub>:Cr<sup>3+</sup>) in synthetic and natural forms is presented in this paper. Alexandrite is a rare and precious mineral that changes color according to the light incident on it. In the synthetic form, it is used technologically as an active laser medium. The electrical characterization was obtained using the Thermally Stimulated Depolarization Current (TSDC) technique, an interesting tool to study the behavior of impurities in insulators. Alexandrite presented the electric dipole relaxation phenomenon, both in natural and in synthetic samples. It was possible to observe TSDC bands for the synthetic sample at around 170 K, and at around 175 K for the natural sample. Besides, photo-induced TSDC measurements were performed through the excitement of the samples by using a continuous wave argon laser. In addition, photoluminescence measurements were performed to verify in advance whether the laser light would be absorbed by the sample, and in order to complement the photo-induced TSDC measurements analysis. The results of photo-induced TSDC experiments have contributed to the understanding of the TSDC bands behavior: the results obtained with the technique suggest that there is an effective participation of Cr<sup>3+</sup> ions in the formation of TSDC bands because they were more intense when the sample was exposed to the argon laser beam.展开更多
Ⅰ. INTRODUCTIONWhen temperature increases, the α-, β-, γ-, ρ-peaks and so on will generally appear in a spectrum of short-circuit thermally stimulated current (TSC)of polymeric electrets. Similar α-, β-, ρ-pea...Ⅰ. INTRODUCTIONWhen temperature increases, the α-, β-, γ-, ρ-peaks and so on will generally appear in a spectrum of short-circuit thermally stimulated current (TSC)of polymeric electrets. Similar α-, β-, ρ-peaks have been studied by TSC method on poly (ethylene terephthalate) (PET), too. However, up to now, no report has been known on any clear展开更多
文摘The investigation of electrical properties in alexandrite (BeAl<sub>2</sub>O<sub>4</sub>:Cr<sup>3+</sup>) in synthetic and natural forms is presented in this paper. Alexandrite is a rare and precious mineral that changes color according to the light incident on it. In the synthetic form, it is used technologically as an active laser medium. The electrical characterization was obtained using the Thermally Stimulated Depolarization Current (TSDC) technique, an interesting tool to study the behavior of impurities in insulators. Alexandrite presented the electric dipole relaxation phenomenon, both in natural and in synthetic samples. It was possible to observe TSDC bands for the synthetic sample at around 170 K, and at around 175 K for the natural sample. Besides, photo-induced TSDC measurements were performed through the excitement of the samples by using a continuous wave argon laser. In addition, photoluminescence measurements were performed to verify in advance whether the laser light would be absorbed by the sample, and in order to complement the photo-induced TSDC measurements analysis. The results of photo-induced TSDC experiments have contributed to the understanding of the TSDC bands behavior: the results obtained with the technique suggest that there is an effective participation of Cr<sup>3+</sup> ions in the formation of TSDC bands because they were more intense when the sample was exposed to the argon laser beam.
文摘Ⅰ. INTRODUCTIONWhen temperature increases, the α-, β-, γ-, ρ-peaks and so on will generally appear in a spectrum of short-circuit thermally stimulated current (TSC)of polymeric electrets. Similar α-, β-, ρ-peaks have been studied by TSC method on poly (ethylene terephthalate) (PET), too. However, up to now, no report has been known on any clear