Heat moving source models along with transient heat analysis by finite element method were used to determine weld thermal cycles and isothermal sections obtained from the application of a gas tungsten arc welding bead...Heat moving source models along with transient heat analysis by finite element method were used to determine weld thermal cycles and isothermal sections obtained from the application of a gas tungsten arc welding beads on Inconel 718 plates. Analytical (Rosenthal’s thick plate model) and finite element results show an acceptable approximation with the experimental weld thermal cycles. The isothermal sections determined by numerical simulation show a better approximation with the experimental welding profile for double-ellipse model heat distribution than Gauss model. To analyze the microstructural transformation produced by different cooling rates in the fusion and heat affected zones, Vickers microhardness measurements (profile and mapping representation) were conducted. A hardness decrement for the heat affected zone (~200 HV0.2) and fusion zone (~240 HV0.2) in comparison with base material (~350 HV0.2) was observed. This behavior has been attributed to the heterogeneous solubilization process of the γ″ phase (nickel matrix), which, according to the continuous-cooling-transformation curve, produced the Laves phase,δ and MC transition phases, generating a loss in hardness close to the fusion zone.展开更多
In our previous study, metals have been used as absorbers in the clear plastic laser transmission welding. The effects of metal thermal conductivity on the welding quality are investigated in the present work. Four me...In our previous study, metals have been used as absorbers in the clear plastic laser transmission welding. The effects of metal thermal conductivity on the welding quality are investigated in the present work. Four metals with distinctly different thermal conductivities, i.e., titanium, nickel, molybdenum, and copper, are selected as light absorbers. The lap welding is conducted with an 808 nm diode laser and simulation experiments are also conducted. Nickel electroplating test is carried out to minimize the side-effects from different light absorptivities of different metals. The results show that the welding with an absorber of higher thermal conductivity can accommodate higher laser input power before smoking, which produces a wider and stronger welding seam.The positive role of the higher thermal conductivity can be attributed to the fact that a desirable thermal field distribution for the molecular diffusion and entanglement is produced from the case with a high thermal conductivity.展开更多
The influence of rare earth oxide CeO_2 on microstructure and wear resistance of M_(80)S_(20) thermal spray and thermal spray welding coatings is studied using optical microscope,scanning electron microscope,X-ray ene...The influence of rare earth oxide CeO_2 on microstructure and wear resistance of M_(80)S_(20) thermal spray and thermal spray welding coatings is studied using optical microscope,scanning electron microscope,X-ray energy dispersion spectroscope,X-ray diffractometer and wear testing machine.The results show that the addi- tion of 8% CeO_2 can improve the microstructure,microhardness and wear resistance of coatings significantly.展开更多
The software of SYSWELD was used to build model and simulate thermal cycle of in-service welding onto active gas pipeline. Influence of pipe diameter, wall thickness and heat input on thermal cycle was studied. The re...The software of SYSWELD was used to build model and simulate thermal cycle of in-service welding onto active gas pipeline. Influence of pipe diameter, wall thickness and heat input on thermal cycle was studied. The results show that t8/5 , t8/3 and peak temperature of inner surface decrease when wall thickness increases from 5 mm to 12 mm. But t8/1 will increases with the increase of wall thickness and will decrease after the wall thickness is larger than 7 mm. Pipe diameter has little influence on thermal cycle and that influence can be ignored when pipe diameter is greater than 273 mm. t8/5 , t8/3 , t8/1 and peak temperature of inner surface will increase with the increase of heat input.展开更多
This paper presents a customized simulation system for analyzing welding temperature field, which is based on Finite elementary Analysis software MSC. Marc. The system has the functions of robustly hexahedral meshing,...This paper presents a customized simulation system for analyzing welding temperature field, which is based on Finite elementary Analysis software MSC. Marc. The system has the functions of robustly hexahedral meshing, automated loading of dynamic heat source models for various welding methods and convenient post-processing for welding temperature field. A gene unit algorithm is presented to achieve robust simulation for assembled structure. High order routine method is used to generate various customized routines robustly, which includes Fortran subroutines for welding heat source, Marc command routines for automated modeling, and python subroutines for post-processing etc. With the system, simulation of welding temperature fields can be easily conducted with simple operations.展开更多
The influence of the second thermal cycle on coarse grained zone (CGHAZ) toughness of X70 steel is studied by weld thermal simulation test, scanning electron microscope and electron microprobe. The results show that ...The influence of the second thermal cycle on coarse grained zone (CGHAZ) toughness of X70 steel is studied by weld thermal simulation test, scanning electron microscope and electron microprobe. The results show that the CGHAZ toughness is improved after the second thermal cycle but being heated during the intercritical HAZ (ICHAZ). The CGHAZ toughness decreases evidently after being heated during partially transformed zone, which chiefly results from the carbon segregation to the grain boundaries of primal austenite, thus forming high carbon martensite austenite (M A) constituent and bringing serious intercritically reheated coarse grain HAZ (IRCGHAZ) embrittlement.展开更多
The effect of different peak temperature(Tp) and cooling time (t8/5) on microstructure, hardness, impact toughness and fracture morphology in the heat-affected zone (HAZ) of HQ130 steel was studied by using weld therm...The effect of different peak temperature(Tp) and cooling time (t8/5) on microstructure, hardness, impact toughness and fracture morphology in the heat-affected zone (HAZ) of HQ130 steel was studied by using weld thermo-simulation test. Experimental results indicate that the impact toughness and hardness decrease with the decrease of Tpor increase of t8/5 under the condition of a single thermal cycle. There is a brittle zone in the vicinity of Tp= 800℃, where the impact toughness is considerably low. There is a softened zone in the vicinity of Tp=700℃, where the hardness decreases but the toughness increases. In the practical application of multi-layer and multipass welding, the welding heat input should be strictly limited (t8/5≤20s) so as to reduce the softness and brittleness in the HAZ of-HQ130 steel.展开更多
Based on the chasteal nucleation theory, the kinetic precipitation model of carbon - nitride particles in weld HAZ is proposed. Using the model,welding simulation technology and the quantitative metallo- graphic anal...Based on the chasteal nucleation theory, the kinetic precipitation model of carbon - nitride particles in weld HAZ is proposed. Using the model,welding simulation technology and the quantitative metallo- graphic analysis,the precipitation transformation temperatue (PTT) curve is obtained.The data from the simulated welds are in good apreement with the value that the PTT curves predicated.展开更多
Colormetric method of images by using two different wavelength images is a new measuring method for welding temperature field on the basis of ordinary colorimetric method, which depends little on the measuring distanc...Colormetric method of images by using two different wavelength images is a new measuring method for welding temperature field on the basis of ordinary colorimetric method, which depends little on the measuring distance, emissivity of body etc. In this paper the real time measuring system and measuring principle of welding temperature field are described, the whole welding temperature field is real time measured, so the temperature distribution at the welding direction and its cross section is obtained, then parameters of thermal cycle. With data from the temperature closed loop control system of the parameters of temperature field is developed and tested. Experimental results prove that it has high measurement speed (time of a field within 0.5 s ) and good dynamic response quality. Weld penetration can be controlled satisfactorily under the variation of welding condition such as welding thickness, welding speed and weldment gap etc.展开更多
The effect of different peak temperature T_P) and cooling time (t_(8/5)) on hardness,impact toughness and fracture morphology in the heat--affected zone (HAZ) of HQ130steel was studied by using welding thermo--simulat...The effect of different peak temperature T_P) and cooling time (t_(8/5)) on hardness,impact toughness and fracture morphology in the heat--affected zone (HAZ) of HQ130steel was studied by using welding thermo--simulation test. Experimental results showthat the impact toughness and hardness decrease with the decrease of T_P or increase oft_(8/5) under the condition of a single thermal cycle. There is a brittle zone in the vicinityof T_P=800℃, where the impact toughness is considerebly low. There is softened zonein vicinity of T_P=700℃, Where the harkness decreases but the toughness increases. Inthe practical application of multi--layer and multi--pass welding, the welding heat inputshould be strictly limited (t_(8/5)≤20s) so as to reduce the softness and brittleness in theHAZ of HQ130 steel.展开更多
The measurement of thermal cycle curves of a high-strength low-alloy steel (HSLA) subjected twin-wire submerged arc welding (SAW) was introduced. The thermal simulation test was performed by using the obtained cur...The measurement of thermal cycle curves of a high-strength low-alloy steel (HSLA) subjected twin-wire submerged arc welding (SAW) was introduced. The thermal simulation test was performed by using the obtained curves. The impact toughness at -50 ℃ temperature of the simulated samples was also tested. OM, SEM and TEM of the heat-affected zone (HAZ) of some simulation specimens were investigated. The results showed that the HSLA endured the twin-wire welding thermal cycle, generally, the low-temperature toughness values of each part of HAZ was lower than that of the parent materials, and the microstructure of coarse-grained zone(CGHAZ) mainly made up of granular bainite is the reason of the toughness serious deterioration. Coarse grain, grain boundary carbide extract and M-A island with large size and irregular polygon, along the grain boundary distribution, are the reasons for the toughness deterioration of CGHAZ. The research also showed that selected parameters of twin-wire SAW can meet the requirements to weld the test steel.展开更多
SYSWELD was used to simulate in-service welding process of gas pipeline of X70 pipeline steel. Welding thermal cycle, stress and deformation of in-service welded joint were studied. The results show that peak temperat...SYSWELD was used to simulate in-service welding process of gas pipeline of X70 pipeline steel. Welding thermal cycle, stress and deformation of in-service welded joint were studied. The results show that peak temperature of coarse grain heat-affected zone (CGHAZ) of in-service welding onto gas pipeline is the same with routine welding, but ts/5, ts/3 and ts/1 decrease at certain degree. For the zone near welded seam, axial stress and hoop stress in the inner pipe wall are compressive stress when welding source passes through the cross-section that is studied, but residual axial stress and residual hoop stress after welded are all tensile stress. Transient deformation and residual deformation are all convex deformation compared with the original pipe diameter size. Deformation achieves maximum when welding thermal source passes through the cross-section that is studied and then decreases during the cooling process after welding.展开更多
The composite coating was prepared by thermal spray welding after making composite powder,which is composed of Ni-based self-melted alloy and AlOceramic powder including nano,sub-micron and micron powders.The influenc...The composite coating was prepared by thermal spray welding after making composite powder,which is composed of Ni-based self-melted alloy and AlOceramic powder including nano,sub-micron and micron powders.The influences of contents and sizes of AlOon the structure and wearability were investigated.The results show that the wear resistance of the coating would be increased greatly by adding AlO,but the spray weldability decreases with increasing AlOcontent.So there is an optimal content of AlOpowder.The composite coating with AlOnano or sub-micron powder of 0.5% has the best abrasive resistance,while the optimal content of AlOmicron powder is 1 %.展开更多
In this paper, toughness properties and microstructurc of low-alloyed multipass welds with yield strength above 700MPa have 6een studied using the weld thermal simulation and throughout thickness CTOD fracture mechani...In this paper, toughness properties and microstructurc of low-alloyed multipass welds with yield strength above 700MPa have 6een studied using the weld thermal simulation and throughout thickness CTOD fracture mechanics tests. Impact testing of thermal simulated specimens showed that the primary weld metal and the fine gmmed weld metal had good toughness, while the coarse grained weld metal had the lowest toughness value as the local brittle zone (LBZ) in multipass weld metals. Cleavage fracture in CTOD testing of thick multipass weld metals was initiated from martensite-austenite (MA) phases in the LBZ. MA phases were distributed at the prior austenite grain boundaries and around ferrite grains. As the size of the local brittle zone along the fatigue crack front increases, CTOD frncture toughness of multipass weld metals decreases. The weakest link theory was used to evaluate effect of the local brittle zone on fracture toughness of thick multipass weld metals. The estimated curves agree well with the eaperimental data.展开更多
The evolution of the microstructure and toughness of APL5L X80 pipeline steel after thermal welding simulation was investigated by X-ray diffraction,electron backscatter diffraction,and transmission electron microscop...The evolution of the microstructure and toughness of APL5L X80 pipeline steel after thermal welding simulation was investigated by X-ray diffraction,electron backscatter diffraction,and transmission electron microscopy.The results indicated that primary heat-affected zones can be divided into weld,coarse-grained,fine-grained,intercritical,and sub-critical zones.The microstructure of the weld zone is mainly composed of bainitic ferrite and a small amount of granular bainite;however,the original austenite grains are distributed in the columnar grains.The structure of the coarse-grained zone is similar to that of the weld zone,but the original austenite grains are equiaxed.In contrast,the microstructure in the fine-grained zone is dominated by fine granular bainite,and the effective grain size is only 8.15μm,thus providing the highest toughness in the entire heat-affected zone.The intercritical and subcritical zones were brittle valley regions,and the microstructure was dominated by granular bainite.However,the martensite-austenite(M/A)constituents are present in island chains along the grain boundaries,and the coarse size of the M/A constituents seriously reduces the toughness.The results of the crack propagation analyzes revealed that high-angle grain boundaries can significantly slow down crack growth and change the crack direction,thereby increasing the material toughness.The impact toughness of the low-temperature tempering zone was equivalent to that of the columnar grain zone,and the impact toughness was between those of the critical and fine-grained zones.展开更多
The weldability of 0.28C-2.0Mn-0.93Al-0.97Si(wt.%)transformation induced plasticity(TRIP)steels was investigated using a 2.5 kW CO2 laser at the welding speeds of 2,2.5 and 3 m/min.The welded joints were characterized...The weldability of 0.28C-2.0Mn-0.93Al-0.97Si(wt.%)transformation induced plasticity(TRIP)steels was investigated using a 2.5 kW CO2 laser at the welding speeds of 2,2.5 and 3 m/min.The welded joints were characterized in terms of hardness,tensile properties and microstructure.High-quality welded joints of TRIP steels with the carbon equivalent of 0.7 were obtained.Lower loss of ductility,nearly unvaried hardness of the fusion zone(FZ)and tensile strength equal to the base metal were observed with increasing welding speed.Lath martensite and lower bainite formed in FZ and the microstructure of FZ varied little with welding speed.Weld thermal simulations of heat-afected zone(HAZ)were carried out using a quenching dilatometer,and the microstructures of dilatometric samples revealed the carbon diffusion-controlled transformations in HAZ.The microstructure distribution of HAZ could be influenced by the welding speed due to the significant temperature gradient over the narrow HAZ.展开更多
The mechanical properties of heat affected zone (HAZ) of two commercial high-Nb X80 grade pipeline steels with different alloy elements were investigated using thermal simulation performed on a Gleeble-3500 thermal ...The mechanical properties of heat affected zone (HAZ) of two commercial high-Nb X80 grade pipeline steels with different alloy elements were investigated using thermal simulation performed on a Gleeble-3500 thermal simulator. The results showed that the high-Nb steels have excellent weldability. Ernbrittlement regions appear in coarse grain heat affected zone (CGHAZ) and intercritically heat affected zone (ICHAZ) ~ Softening region appears in fine-grain heat affected zone (FGHAZ), and the strength here was even lower than 555 MPa as required in the standard. Meanwhile, with the increase of heat input, the strength and the toughness of HAZ of steel with high Nb, C and lower alloy decrease notably. Therefore, take into account the welding procedure during manufacture of weld pipe, suitable amount of alloy elements, such as Cr, Ni, Cu, Mo and so on, is necessary for high Nb X80 heavy- thick steel plate.展开更多
基金CONACyT-México for the scholarship providedCONACyT (Project 736)SIP-IPN are also acknowledged for funds given to conduct this research
文摘Heat moving source models along with transient heat analysis by finite element method were used to determine weld thermal cycles and isothermal sections obtained from the application of a gas tungsten arc welding beads on Inconel 718 plates. Analytical (Rosenthal’s thick plate model) and finite element results show an acceptable approximation with the experimental weld thermal cycles. The isothermal sections determined by numerical simulation show a better approximation with the experimental welding profile for double-ellipse model heat distribution than Gauss model. To analyze the microstructural transformation produced by different cooling rates in the fusion and heat affected zones, Vickers microhardness measurements (profile and mapping representation) were conducted. A hardness decrement for the heat affected zone (~200 HV0.2) and fusion zone (~240 HV0.2) in comparison with base material (~350 HV0.2) was observed. This behavior has been attributed to the heterogeneous solubilization process of the γ″ phase (nickel matrix), which, according to the continuous-cooling-transformation curve, produced the Laves phase,δ and MC transition phases, generating a loss in hardness close to the fusion zone.
基金Supported by the National Key R&D Program of China under Grant No 2016YFA0401100the National Natural Science Foundation of China under Grant No 61575129the National High-Technology Research and Development Program of China under Grant No 2015AA021102
文摘In our previous study, metals have been used as absorbers in the clear plastic laser transmission welding. The effects of metal thermal conductivity on the welding quality are investigated in the present work. Four metals with distinctly different thermal conductivities, i.e., titanium, nickel, molybdenum, and copper, are selected as light absorbers. The lap welding is conducted with an 808 nm diode laser and simulation experiments are also conducted. Nickel electroplating test is carried out to minimize the side-effects from different light absorptivities of different metals. The results show that the welding with an absorber of higher thermal conductivity can accommodate higher laser input power before smoking, which produces a wider and stronger welding seam.The positive role of the higher thermal conductivity can be attributed to the fact that a desirable thermal field distribution for the molecular diffusion and entanglement is produced from the case with a high thermal conductivity.
文摘The influence of rare earth oxide CeO_2 on microstructure and wear resistance of M_(80)S_(20) thermal spray and thermal spray welding coatings is studied using optical microscope,scanning electron microscope,X-ray energy dispersion spectroscope,X-ray diffractometer and wear testing machine.The results show that the addi- tion of 8% CeO_2 can improve the microstructure,microhardness and wear resistance of coatings significantly.
基金Sponsored by Scientific Research Fund for Doctors(Y040312)Innovation Fund for Doctors(B2005-3) of China University of Petroleum
文摘The software of SYSWELD was used to build model and simulate thermal cycle of in-service welding onto active gas pipeline. Influence of pipe diameter, wall thickness and heat input on thermal cycle was studied. The results show that t8/5 , t8/3 and peak temperature of inner surface decrease when wall thickness increases from 5 mm to 12 mm. But t8/1 will increases with the increase of wall thickness and will decrease after the wall thickness is larger than 7 mm. Pipe diameter has little influence on thermal cycle and that influence can be ignored when pipe diameter is greater than 273 mm. t8/5 , t8/3 , t8/1 and peak temperature of inner surface will increase with the increase of heat input.
基金This work is supported by the National Natural Science Foundation of China under contracts 50904038 and 51175253.
文摘This paper presents a customized simulation system for analyzing welding temperature field, which is based on Finite elementary Analysis software MSC. Marc. The system has the functions of robustly hexahedral meshing, automated loading of dynamic heat source models for various welding methods and convenient post-processing for welding temperature field. A gene unit algorithm is presented to achieve robust simulation for assembled structure. High order routine method is used to generate various customized routines robustly, which includes Fortran subroutines for welding heat source, Marc command routines for automated modeling, and python subroutines for post-processing etc. With the system, simulation of welding temperature fields can be easily conducted with simple operations.
文摘The influence of the second thermal cycle on coarse grained zone (CGHAZ) toughness of X70 steel is studied by weld thermal simulation test, scanning electron microscope and electron microprobe. The results show that the CGHAZ toughness is improved after the second thermal cycle but being heated during the intercritical HAZ (ICHAZ). The CGHAZ toughness decreases evidently after being heated during partially transformed zone, which chiefly results from the carbon segregation to the grain boundaries of primal austenite, thus forming high carbon martensite austenite (M A) constituent and bringing serious intercritically reheated coarse grain HAZ (IRCGHAZ) embrittlement.
文摘The effect of different peak temperature(Tp) and cooling time (t8/5) on microstructure, hardness, impact toughness and fracture morphology in the heat-affected zone (HAZ) of HQ130 steel was studied by using weld thermo-simulation test. Experimental results indicate that the impact toughness and hardness decrease with the decrease of Tpor increase of t8/5 under the condition of a single thermal cycle. There is a brittle zone in the vicinity of Tp= 800℃, where the impact toughness is considerably low. There is a softened zone in the vicinity of Tp=700℃, where the hardness decreases but the toughness increases. In the practical application of multi-layer and multipass welding, the welding heat input should be strictly limited (t8/5≤20s) so as to reduce the softness and brittleness in the HAZ of-HQ130 steel.
文摘Based on the chasteal nucleation theory, the kinetic precipitation model of carbon - nitride particles in weld HAZ is proposed. Using the model,welding simulation technology and the quantitative metallo- graphic analysis,the precipitation transformation temperatue (PTT) curve is obtained.The data from the simulated welds are in good apreement with the value that the PTT curves predicated.
文摘Colormetric method of images by using two different wavelength images is a new measuring method for welding temperature field on the basis of ordinary colorimetric method, which depends little on the measuring distance, emissivity of body etc. In this paper the real time measuring system and measuring principle of welding temperature field are described, the whole welding temperature field is real time measured, so the temperature distribution at the welding direction and its cross section is obtained, then parameters of thermal cycle. With data from the temperature closed loop control system of the parameters of temperature field is developed and tested. Experimental results prove that it has high measurement speed (time of a field within 0.5 s ) and good dynamic response quality. Weld penetration can be controlled satisfactorily under the variation of welding condition such as welding thickness, welding speed and weldment gap etc.
文摘The effect of different peak temperature T_P) and cooling time (t_(8/5)) on hardness,impact toughness and fracture morphology in the heat--affected zone (HAZ) of HQ130steel was studied by using welding thermo--simulation test. Experimental results showthat the impact toughness and hardness decrease with the decrease of T_P or increase oft_(8/5) under the condition of a single thermal cycle. There is a brittle zone in the vicinityof T_P=800℃, where the impact toughness is considerebly low. There is softened zonein vicinity of T_P=700℃, Where the harkness decreases but the toughness increases. Inthe practical application of multi--layer and multi--pass welding, the welding heat inputshould be strictly limited (t_(8/5)≤20s) so as to reduce the softness and brittleness in theHAZ of HQ130 steel.
基金Funded by the Doctorate Fund of the Ministry of Education(No.200804870034)
文摘The measurement of thermal cycle curves of a high-strength low-alloy steel (HSLA) subjected twin-wire submerged arc welding (SAW) was introduced. The thermal simulation test was performed by using the obtained curves. The impact toughness at -50 ℃ temperature of the simulated samples was also tested. OM, SEM and TEM of the heat-affected zone (HAZ) of some simulation specimens were investigated. The results showed that the HSLA endured the twin-wire welding thermal cycle, generally, the low-temperature toughness values of each part of HAZ was lower than that of the parent materials, and the microstructure of coarse-grained zone(CGHAZ) mainly made up of granular bainite is the reason of the toughness serious deterioration. Coarse grain, grain boundary carbide extract and M-A island with large size and irregular polygon, along the grain boundary distribution, are the reasons for the toughness deterioration of CGHAZ. The research also showed that selected parameters of twin-wire SAW can meet the requirements to weld the test steel.
文摘SYSWELD was used to simulate in-service welding process of gas pipeline of X70 pipeline steel. Welding thermal cycle, stress and deformation of in-service welded joint were studied. The results show that peak temperature of coarse grain heat-affected zone (CGHAZ) of in-service welding onto gas pipeline is the same with routine welding, but ts/5, ts/3 and ts/1 decrease at certain degree. For the zone near welded seam, axial stress and hoop stress in the inner pipe wall are compressive stress when welding source passes through the cross-section that is studied, but residual axial stress and residual hoop stress after welded are all tensile stress. Transient deformation and residual deformation are all convex deformation compared with the original pipe diameter size. Deformation achieves maximum when welding thermal source passes through the cross-section that is studied and then decreases during the cooling process after welding.
基金Item Sponsored by Provincial Natural Science Foundation of Jiangsu of China(BK2000012)
文摘The composite coating was prepared by thermal spray welding after making composite powder,which is composed of Ni-based self-melted alloy and AlOceramic powder including nano,sub-micron and micron powders.The influences of contents and sizes of AlOon the structure and wearability were investigated.The results show that the wear resistance of the coating would be increased greatly by adding AlO,but the spray weldability decreases with increasing AlOcontent.So there is an optimal content of AlOpowder.The composite coating with AlOnano or sub-micron powder of 0.5% has the best abrasive resistance,while the optimal content of AlOmicron powder is 1 %.
文摘In this paper, toughness properties and microstructurc of low-alloyed multipass welds with yield strength above 700MPa have 6een studied using the weld thermal simulation and throughout thickness CTOD fracture mechanics tests. Impact testing of thermal simulated specimens showed that the primary weld metal and the fine gmmed weld metal had good toughness, while the coarse grained weld metal had the lowest toughness value as the local brittle zone (LBZ) in multipass weld metals. Cleavage fracture in CTOD testing of thick multipass weld metals was initiated from martensite-austenite (MA) phases in the LBZ. MA phases were distributed at the prior austenite grain boundaries and around ferrite grains. As the size of the local brittle zone along the fatigue crack front increases, CTOD frncture toughness of multipass weld metals decreases. The weakest link theory was used to evaluate effect of the local brittle zone on fracture toughness of thick multipass weld metals. The estimated curves agree well with the eaperimental data.
基金The authors appreciate the financial support from National Key Research and Development Program of China(2017YFBO304900).
文摘The evolution of the microstructure and toughness of APL5L X80 pipeline steel after thermal welding simulation was investigated by X-ray diffraction,electron backscatter diffraction,and transmission electron microscopy.The results indicated that primary heat-affected zones can be divided into weld,coarse-grained,fine-grained,intercritical,and sub-critical zones.The microstructure of the weld zone is mainly composed of bainitic ferrite and a small amount of granular bainite;however,the original austenite grains are distributed in the columnar grains.The structure of the coarse-grained zone is similar to that of the weld zone,but the original austenite grains are equiaxed.In contrast,the microstructure in the fine-grained zone is dominated by fine granular bainite,and the effective grain size is only 8.15μm,thus providing the highest toughness in the entire heat-affected zone.The intercritical and subcritical zones were brittle valley regions,and the microstructure was dominated by granular bainite.However,the martensite-austenite(M/A)constituents are present in island chains along the grain boundaries,and the coarse size of the M/A constituents seriously reduces the toughness.The results of the crack propagation analyzes revealed that high-angle grain boundaries can significantly slow down crack growth and change the crack direction,thereby increasing the material toughness.The impact toughness of the low-temperature tempering zone was equivalent to that of the columnar grain zone,and the impact toughness was between those of the critical and fine-grained zones.
基金the Technology Innovation Program of Shanghai Research Institute of Materials(19SG-06)The authors gratefully acknowledge Ansteel Group Corporation for providing the materials,and the authors also acknowledge the support from Instrumental Analysis and Research Center of Shanghai University for the microstructural characterizations.
文摘The weldability of 0.28C-2.0Mn-0.93Al-0.97Si(wt.%)transformation induced plasticity(TRIP)steels was investigated using a 2.5 kW CO2 laser at the welding speeds of 2,2.5 and 3 m/min.The welded joints were characterized in terms of hardness,tensile properties and microstructure.High-quality welded joints of TRIP steels with the carbon equivalent of 0.7 were obtained.Lower loss of ductility,nearly unvaried hardness of the fusion zone(FZ)and tensile strength equal to the base metal were observed with increasing welding speed.Lath martensite and lower bainite formed in FZ and the microstructure of FZ varied little with welding speed.Weld thermal simulations of heat-afected zone(HAZ)were carried out using a quenching dilatometer,and the microstructures of dilatometric samples revealed the carbon diffusion-controlled transformations in HAZ.The microstructure distribution of HAZ could be influenced by the welding speed due to the significant temperature gradient over the narrow HAZ.
基金Item Sponsored by National Natural Science Foundation of China(51171162)Natural Science Foundation of Hebei Province of China(E2011203169)The R&D Project of CITIC-CBMM(2011-D056-3)
文摘The mechanical properties of heat affected zone (HAZ) of two commercial high-Nb X80 grade pipeline steels with different alloy elements were investigated using thermal simulation performed on a Gleeble-3500 thermal simulator. The results showed that the high-Nb steels have excellent weldability. Ernbrittlement regions appear in coarse grain heat affected zone (CGHAZ) and intercritically heat affected zone (ICHAZ) ~ Softening region appears in fine-grain heat affected zone (FGHAZ), and the strength here was even lower than 555 MPa as required in the standard. Meanwhile, with the increase of heat input, the strength and the toughness of HAZ of steel with high Nb, C and lower alloy decrease notably. Therefore, take into account the welding procedure during manufacture of weld pipe, suitable amount of alloy elements, such as Cr, Ni, Cu, Mo and so on, is necessary for high Nb X80 heavy- thick steel plate.