期刊文献+
共找到11,024篇文章
< 1 2 250 >
每页显示 20 50 100
The Influence of Rapid Thermal Annealing on SiGe/Si Multiple-Quantum Wells p_-i_-n Photodiodes
1
作者 李成 杨沁清 +3 位作者 王红杰 王玉田 余金中 王启明 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2001年第6期695-699,共5页
The influence of thermal treatment on Si 1-x Ge x/Si multiple-quantum wells (MQW) p-i-n photodiodes has been investigated by photocurrent spectroscopy combined with X-ray double crystal dif... The influence of thermal treatment on Si 1-x Ge x/Si multiple-quantum wells (MQW) p-i-n photodiodes has been investigated by photocurrent spectroscopy combined with X-ray double crystal diffraction.The cutoff wavelength is significantly reduced due to the Si-Ge interdiffusion and partial relaxation of the strained SiGe alloy.The values of the blue shift increase slowly with the annealing temperatures in the range of 750℃ to 850℃.However,the nonlinear changes in photocurrent intensities of the samples annealed at different temperatures have been observed,which is mainly dominated by the generation of misfit dislocations and the reduction of the point defects in the heating process. 展开更多
关键词 SiGe/Si MQW photodiodes blue shift thermal annealing INTERDIFFUSION
下载PDF
Improvement of thermal performance of envelopes for traditional wooden vernacular dwellings of Tujia Minority in Western Hunan,China 被引量:6
2
作者 李哲 石磊 余志武 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期479-483,共5页
Thermal performance of envelopes and indoor thermal environment were technologically improved for traditional wooden vernacular dwellings of Tujia Minority in Western Hunan, China, on the premise of protecting their c... Thermal performance of envelopes and indoor thermal environment were technologically improved for traditional wooden vernacular dwellings of Tujia Minority in Western Hunan, China, on the premise of protecting their conventional styles. Thermal insulation boards and wooden boards were added to the interior side of external walls of vernacular dwellings to form two layers of air cavities, so as to gain excellent thermal performance. The indoor temperature of such dwellings after reconstruction was apparently improved compared with the data before reconstruction both in winter and summer, which verified the feasibility and the effectiveness of the reconstruction technologies proposed. 展开更多
关键词 traditional wooden vemacular dwellings thermal performance reconstruction
下载PDF
Change in internal energy of thermal diffusion stagnation point Maxwell nanofluid flow along with solar radiation and thermal conductivity 被引量:4
3
作者 Mair Khan TSalahuddin +2 位作者 ATanveer MYMalik Arif Hussain 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第10期2352-2358,共7页
This paper concerns the characteristics of heat and mass transfer in upper convected Maxwell fluid flow over a linear stretching sheet with solar radiation,viscous desperation and temperature based viscosity.After bou... This paper concerns the characteristics of heat and mass transfer in upper convected Maxwell fluid flow over a linear stretching sheet with solar radiation,viscous desperation and temperature based viscosity.After boundary layer approximation,the governing equations are achieved(namely Maxwell,upper convected material derivative,thermal and concentration diffusions).By using the self-similarity transformations the governing PDEs are converted into nonlinear ODEs and solved by RK-4 method in combination with Newton Raphson(shooting technique).The effects of developed parameters on velocity,temperature,concentration,fraction factor,heat and mass diffusions are exemplified through graphs and tabular form and are deliberated in detail.Numerical values of fraction factor,heat and mass transfer rates with several parameters are computed and examined.It is noticed that the temperature is more impactable for higher values of radiative heat transport,thermal conductivity and viscous dissipation.The comparison data for some limiting case are acquired and are originated to be in good agreement with previously published articles. 展开更多
关键词 MAXwell NANOFLUID Viscous DISSIPATION Solar radiation Variable viscosity thermal conductivity Chemical reaction STAGNATION point SHOOTING method
下载PDF
Thermal stretching in two-phase porous media: Physical basis for Maxwell model 被引量:2
4
作者 Xiaohu Yang Tianjian Lu Tongbeum Kim 《Theoretical & Applied Mechanics Letters》 CAS 2013年第2期57-61,共5页
An alternate yet general form of the classical effective thermal conductivity model (Maxwell model) for two-phase porous materials is presented, serving an explicit thermo-physicM basis. It is demonstrated that the ... An alternate yet general form of the classical effective thermal conductivity model (Maxwell model) for two-phase porous materials is presented, serving an explicit thermo-physicM basis. It is demonstrated that the reduced effective thermal conductivity of the porous media due to non-conducting pore inclusions is caused by the mechanism of thermal stretching, which is a combi- nation of reduced effective heat flow area and elongated heat transfer distance (thermal tortuosity). 展开更多
关键词 thermal stretching effective thermal conductivity porous media Maxwell model
下载PDF
MHD graphene-polydimethylsiloxane Maxwell nanofluid flow in a squeezing channel with thermal radiation effects 被引量:2
5
作者 G.C.SHIT S.MUKHERJEE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第9期1269-1284,共16页
The magnetohydrodynamic (MHD) graphene-polydimethylsiloxane (PDMS) nanofluid flow between two squeezing parallel plates in the presence of thermal radiation effects is investigated. The energy efficiency of the system... The magnetohydrodynamic (MHD) graphene-polydimethylsiloxane (PDMS) nanofluid flow between two squeezing parallel plates in the presence of thermal radiation effects is investigated. The energy efficiency of the system via the Bejan number is studied extensively. The governing partial differential equations are converted by using the similarity transformations into a set of coupled ordinary differential equations. The set of these converted equations is solved by using the differential transform method (DTM). The entropy generation in terms of the Bejan number, the coefficient of skin-friction, and the heat transfer rate is furthermore investigated under the effects of various physical parameters of interest. The present study shows that the Bejan number, the velocity and thermal profiles, and the rate of heat transfer decrease with a rise in the Deborah number De while the skin-friction coefficient increases. It is also observed that the entropy generation due to frictional forces is higher than that due to thermal effects. Thus, the study bears the potential application in powder technology as well as in biomedical engineering. 展开更多
关键词 graphene-polydimethylsiloxane (PDMS) MAXwell fluid differential transform method (DTM) thermal radiation Bejan number
下载PDF
MHD mixed convective stagnation-point flow of Eyring-Powell nanofluid over stretching cylinder with thermal slip conditions 被引量:1
6
作者 Hammed Abiodun OGUNSEYE Precious SIBANDA Hiranmoy MONDAL 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第5期1172-1183,共12页
The optimal design of heating and cooling systems must take into account heat radiation which is a non-linear process.In this study,the mixed convection in a radiative magnetohydrodynamic Eyring-Powell copperwater nan... The optimal design of heating and cooling systems must take into account heat radiation which is a non-linear process.In this study,the mixed convection in a radiative magnetohydrodynamic Eyring-Powell copperwater nanofluid over a stretching cylinder was investigated.The energy balance is modeled,taking into account the non-linear thermal radiation and a thermal slip condition.The effects of the embedded flow parameters on the fluid properties,as well as on the skin friction coefficient and heat transfer rate,are analyzed.Unlike in many existing studies,the recent spectral quasi-linearization method is used to solve the coupled nonlinear boundary-value problem.The computational result shows that increasing the nanoparticle volume fraction,thermal radiation parameter and heat generation parameter enhances temperature profile.We found that the velocity slip parameter and the fluid material parameter enhance the skin friction.A comparison of the current numerical results with existing literature for some limiting cases shows excellent agreement. 展开更多
关键词 Eyring-Powell model stretching cylinder NANOFLUID thermal radiation slip effects spectral quasi-linearization method
下载PDF
Thermal stresses analysis of casing string used in enhanced geothermal systems wells 被引量:1
7
作者 ZHANG Pei-feng 《Journal of Groundwater Science and Engineering》 2016年第4期293-300,共8页
In the enhanced geothermal systems wells, casing temperature variation produces casing thermal stresses, resulting in casing uplift or bucking. When the induced thermal stresses exceed casing material's yield stre... In the enhanced geothermal systems wells, casing temperature variation produces casing thermal stresses, resulting in casing uplift or bucking. When the induced thermal stresses exceed casing material's yield strength, the casing deforms and collapses. The traditional casing design standard only considers the influence of temperature variation on casing material's yield strength. Actually, for commonly used grades of steel pipe, casing's material properties-such as yield strength, coefficient of thermal expansion, and modulus of elasticity change with temperature variation. In this paper, the modified thermal stress equation is given. Examples show that the allowable temperature of the material grade N80's casing is only 164 ℃, which is much lower than that of the traditional design standard. The effective method to improve the casing pipe's allowable temperature is pre-stressed cementing technology. Pre-stressed cementing includes pre-tension stress cementing and pre-pressure stress cementing. This paper focuses on the design method of full casing pre-tension stress cementing and the ground anchor full casing string pre-tension cementing construction process. 展开更多
关键词 Casing thermal stress EGS wells Casing deformation and collapse Pre-tension stress cementing well completion design Pre-stressed cementing
下载PDF
Thermal Degradation and Decomposition Kinetics of Freeze Dried Cow and Camel Milk as well as Their Constituents 被引量:2
8
作者 K. V. Sunooj J. George +2 位作者 V. A. Sajeev Kumar K. Radhakrishna A. S. Bawa 《Journal of Food Science and Engineering》 2011年第2期77-84,共8页
A study was conducted to evaluate thermal properties and degradation kinetic parameters of FD cow milk and camel milk powder. FT-IR was used to confirm the fat removal from the whole milk powder. Differential Scanning... A study was conducted to evaluate thermal properties and degradation kinetic parameters of FD cow milk and camel milk powder. FT-IR was used to confirm the fat removal from the whole milk powder. Differential Scanning Calorimetry (DSC) was used to study the thermal transitions. DSC thermograms of WMP showed a two-step endotherm, the former at lower temperatures (cow milk 16-35 ℃, camel milk 25-60 ℃) and the later at higher temperatures (cow milk 75-125 ℃, camel milk 90-160 ℃). The main difference observed between cow and camel milk was peak maximum temperature for fat melting, AH and other decomposition temperatures. The enthalpy of fat melting was 2.314 J/g and 3.397 J/g for cow and camel milk respectively. Thermogravimetric Analysis (TGA)/derivative thermogravimetric analysis (DTG) also showed two steps degradation. The first step involves lactose degradation and second step corresponds to combined degradation of protein and fat. Hence logβ vs 1000/T was plotted separately for individual components to determine cumulative value of activation energy using Flynn-Wall-Osawa method. 展开更多
关键词 thermal degradation differential scanning calorimetry thermogravimetric analysis FT-IR Flynn-Wall-Osawa method.
下载PDF
Simulation of thermal breakthrough factors affecting carbonate geothermalto-well systems 被引量:1
9
作者 Jia-xing Sun Gao-fan Yue Wei Zhang 《Journal of Groundwater Science and Engineering》 2023年第4期379-390,共12页
Fractures play a pivotal role in carbonate thermal storage systems,serving as primary hydraulic conductivity channels that significantly influence thermal breakthrough times and heat extraction efficiency in geotherma... Fractures play a pivotal role in carbonate thermal storage systems,serving as primary hydraulic conductivity channels that significantly influence thermal breakthrough times and heat extraction efficiency in geothermal-to-well systems.Their impact is critical for well placement and system life prediction.This paper focuses on a geothermal-to-well system within the carbonate reservoir of the Wumishan formation in the Rongcheng geothermal field,Xiong'an new area.It employs a combination of field tests and numerical simulations to determine the permeability of the reservoir and the evolution of fractures between wells.It also examines the influence of fracture width and roughness coefficient on the seepage and temperature fields under various injection scenarios and predicts thermal breakthrough times for production wells.The results show:Higher permeability is observed near well D16 compared to well D22 within the studied geothermal-to-well systems.Wider fractures between wells result in faster temperature decline in production wells.Lower injection flow rates lead to slower temperature reduction in injection wells.The use of roughness coefficients minimizes temperature variations in production wells.This study not only offers guidance for the development and utilization of the geothermal well system,but also contributes to a deeper understanding of the groundwater seepage and heat transfer process influenced by fractures. 展开更多
关键词 Geothermal recharge Influencing factor thermal breakthrough Seepage field Temperature field
下载PDF
Non-Linear Effect of Volume Fraction of Inclusions on The Effective Thermal Conductivity of Composite Materials: A Modified Maxwell Model 被引量:1
10
作者 Sajjan Kumar R. S. Bhoopal +2 位作者 P. K. Sharma R. S. Beniwal Ramvir Singh 《Open Journal of Composite Materials》 2011年第1期10-18,共9页
In this paper, non-linear dependence of volume fraction of inclusions on the effective thermal conductivity of composite materials is investigated. Proposed approximation formula is based on the Maxwell’s equation, i... In this paper, non-linear dependence of volume fraction of inclusions on the effective thermal conductivity of composite materials is investigated. Proposed approximation formula is based on the Maxwell’s equation, in that a non-linear term dependent on the volume fraction of the inclusions and the ratio of the thermal conductivities of the polymer continuum and inclusions is introduced in place of the volume fraction of inclusions. The modified Maxwell’s equation is used to calculate effective thermal conductivity of several composite materials and agreed well with the earlier experimental results. A comparison of the proposed relation with different models has also been made. 展开更多
关键词 EFFECTIVE thermal CONDUCTIVITY Empirical CORRECTION TERM Composite Materials
下载PDF
Mechanism of internal thermal runaway propagation in blade batteries 被引量:3
11
作者 Xuning Feng Fangshu Zhang +3 位作者 Wensheng Huang Yong Peng Chengshan Xu Minggao Ouyang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期184-194,I0005,共12页
Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propaga... Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propagation within a blade battery by using a nail to trigger thermal runaway and thermocouples to track its propagation inside a cell.The results showed that the internal thermal runaway could propagate for up to 272 s,which is comparable to that of a traditional battery module.The velocity of the thermal runaway propagation fluctuated between 1 and 8 mm s^(-1),depending on both the electrolyte content and high-temperature gas diffusion.In the early stages of thermal runaway,the electrolyte participated in the reaction,which intensified the thermal runaway and accelerated its propagation.As the battery temperature increased,the electrolyte evaporated,which attenuated the acceleration effect.Gas diffusion affected thermal runaway propagation through both heat transfer and mass transfer.The experimental results indicated that gas diffusion accelerated the velocity of thermal runaway propagation by 36.84%.We used a 1D mathematical model and confirmed that convective heat transfer induced by gas diffusion increased the velocity of thermal runaway propagation by 5.46%-17.06%.Finally,the temperature rate curve was analyzed,and a three-stage mechanism for internal thermal runaway propagation was proposed.In Stage I,convective heat transfer from electrolyte evaporation locally increased the temperature to 100℃.In Stage II,solid heat transfer locally increases the temperature to trigger thermal runaway.In StageⅢ,thermal runaway sharply increases the local temperature.The proposed mechanism sheds light on the internal thermal runaway propagation of blade batteries and offers valuable insights into safety considerations for future design. 展开更多
关键词 Lithium-ion battery Blade battery thermal runaway Internal thermal runaway propagation
下载PDF
Inherent thermal-responsive strategies for safe lithium batteries 被引量:2
12
作者 Jia-Xin Guo Chang Gao +9 位作者 He Liu Feng Jiang Zaichun Liu Tao Wang Yuan Ma Yiren Zhong Jiarui He Zhi Zhu Yuping Wu Xin-Bing Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期519-534,I0012,共17页
Safe batteries are the basis for next-generation application scenarios such as portable energy storage devices and electric vehicles,which are crucial to achieving carbon neutralization.Electrolytes,separators,and ele... Safe batteries are the basis for next-generation application scenarios such as portable energy storage devices and electric vehicles,which are crucial to achieving carbon neutralization.Electrolytes,separators,and electrodes as main components of lithium batteries strongly affect the occurrence of safety accidents.Responsive materials,which can respond to external stimuli or environmental change,have triggered extensive attentions recently,holding great promise in facilitating safe and smart batteries.This review thoroughly discusses recent advances regarding the construction of high-safety lithium batteries based on internal thermal-responsive strategies,together with the corresponding changes in electrochemical performance under external stimulus.Furthermore,the existing challenges and outlook for the design of safe batteries are presented,creating valuable insights and proposing directions for the practical implementation of safe lithium batteries. 展开更多
关键词 Lithium battery thermal safety thermal runaway thermal-responsive
下载PDF
Personal Thermal Management by Radiative Cooling and Heating 被引量:2
13
作者 Shidong Xue Guanghan Huang +3 位作者 Qing Chen Xungai Wang Jintu Fan Dahua Shou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期225-267,共43页
Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building hea... Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building heating,ventilation,and air-conditioning systems.In recent years,there has been a surge in advancements in personal thermal management(PTM),aiming to regulate heat and moisture transfer within our immediate surroundings,clothing,and skin.The advent of PTM is driven by the rapid development in nano/micro-materials and energy science and engineering.An emerging research area in PTM is personal radiative thermal management(PRTM),which demonstrates immense potential with its high radiative heat transfer efficiency and ease of regulation.However,it is less taken into account in traditional textiles,and there currently lies a gap in our knowledge and understanding of PRTM.In this review,we aim to present a thorough analysis of advanced textile materials and technologies for PRTM.Specifically,we will introduce and discuss the underlying radiation heat transfer mechanisms,fabrication methods of textiles,and various indoor/outdoor applications in light of their different regulation functionalities,including radiative cooling,radiative heating,and dual-mode thermoregulation.Furthermore,we will shine a light on the current hurdles,propose potential strategies,and delve into future technology trends for PRTM with an emphasis on functionalities and applications. 展开更多
关键词 Personal thermal management Radiative cooling and heating thermal comfort Dynamic thermoregulation
下载PDF
Effect of safety valve types on the gas venting behavior and thermal runaway hazard severity of large-format prismatic lithium iron phosphate batteries 被引量:2
14
作者 Zhuangzhuang Jia Yuanyuan Min +5 位作者 Peng Qin Wenxin Mei Xiangdong Meng Kaiqiang Jin Jinhua Sun Qingsong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期195-207,I0006,共14页
The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the ... The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the TR hazard severity of LIBs,are not known.In this paper,the TR and gas venting behavior of three 100 A h lithium iron phosphate(LFP)batteries with different safety valves are investigated under overheating.Compared to previous studies,the main contribution of this work is in studying and evaluating the effect of gas venting behavior and TR hazard severity of LFP batteries with three safety valve types.Two significant results are obtained:(Ⅰ)the safety valve type dominates over gas venting pressure of battery during safety venting,the maximum gas venting pressure of LFP batteries with a round safety valve is 3320 Pa,which is one order of magnitude higher than other batteries with oval or cavity safety valve;(Ⅱ)the LFP battery with oval safety valve has the lowest TR hazard as shown by the TR hazard assessment model based on gray-fuzzy analytic hierarchy process.This study reveals the effect of safety valve type on TR and gas venting,providing a clear direction for the safety valve design. 展开更多
关键词 Lithium iron phosphate battery Safety valve thermal runaway Gas venting behavior thermal runaway hazard severity Gray-fuzzy analytic hierarchy process
下载PDF
Regulatable Orthotropic 3D Hybrid Continuous Carbon Networks for Efficient Bi-Directional Thermal Conduction 被引量:2
15
作者 Huitao Yu Lianqiang Peng +2 位作者 Can Chen Mengmeng Qin Wei Feng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期136-148,共13页
Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer eff... Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task.Herein,an orthotropic three-dimensional(3D)hybrid carbon network(VSCG)is fabricated by depositing vertically aligned carbon nanotubes(VACNTs)on the surface of a horizontally oriented graphene film(HOGF).The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy.After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsi-loxane(PDMS),VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained.The highest in-plane and through-plane thermal conduc-tivities of the composites are 113.61 and 24.37 W m^(-1)K^(-1),respectively.The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance.In addition,the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3%compared to that of a state-of-the-art thermal pad.This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes. 展开更多
关键词 Orthotropic continuous structures Hybrid carbon networks Carbon/polymer composites thermal interface materials
下载PDF
Micro-macro evolution of mechanical behaviors of thermally damaged rock:A state-of-the-art review 被引量:1
16
作者 Yunmin Wang Jun Peng +2 位作者 Linfei Wang Chuanhua Xu Bibo Dai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2833-2853,共21页
The influence of thermal damage on macroscopic and microscopic characteristics of different rocks has received much attention in the field of rock engineering.When the rocks are subjected to thermal treatment,the chan... The influence of thermal damage on macroscopic and microscopic characteristics of different rocks has received much attention in the field of rock engineering.When the rocks are subjected to thermal treatment,the change of macroscopic characteristics and evolution of micro-structure would be induced,ultimately resulting in different degrees of thermal damage in rocks.To better understand the thermal damage mechanism of different rocks and its effect on the rock performance,this study reviews a large number of test results of rock specimens experiencing heating and cooling treatment in the laboratory.Firstly,the variations of macroscopic behaviors,including physical parameters,mechanical parameters,thermal conductivity and permeability,are examined.The variations of mechanical parameters with thermal treatment variables(i.e.temperature or the number of thermal cycles)are divided into four types.Secondly,several measuring methods for microstructure,such as polarizing microscopy,fluorescent method,scanning electron microscopy(SEM),X-ray computerized tomography(CT),acoustic emission(AE)and ultrasonic technique,are introduced.Furthermore,the effect of thermal damage on the mechanical parameters of rocks in response to different thermal treatments,involving temperature magnitude,cooling method and thermal cycle,are discussed.Finally,the limitations and prospects for the research of rock thermal damage are proposed. 展开更多
关键词 thermal damage Macroscopic characteristics Microstructure evolution Temperature magnitude Cooling method thermal cycle
下载PDF
Heat transfer enhanced inorganic phase change material compositing carbon nanotubes for battery thermal management and thermal runaway propagation mitigation 被引量:1
17
作者 Xinyi Dai Ping Ping +4 位作者 Depeng Kong Xinzeng Gao Yue Zhang Gongquan Wang Rongqi Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期226-238,I0006,共14页
Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase chan... Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well. 展开更多
关键词 Inorganic phase change material Carbon nanotube Battery thermal management thermal runaway propagation Fire resistance ENCAPSULATION
下载PDF
MXene multi-functionalization of polyrotaxane based PCMs and the applications in electronic devices thermal management 被引量:1
18
作者 Guangzhong Yin Alba Marta Lopez +5 位作者 Ignacio Collado Antonio Vazquez-Lopez Xiang Ao Jose Hobson Silvia G.Prolongo Deyi Wang 《Nano Materials Science》 EI CAS CSCD 2024年第5期495-503,共9页
The aim of this work was to improve the thermal conductivity and electromagnetic shielding of the leakage proof phase change materials(PCMs),in which a polyrotaxane(PLR)was used as a support material to encapsulate PE... The aim of this work was to improve the thermal conductivity and electromagnetic shielding of the leakage proof phase change materials(PCMs),in which a polyrotaxane(PLR)was used as a support material to encapsulate PEG 1k or PEG 6k and MXene as multi-functional filler.The PCMs can be processed conveniently by a hot press and the PEG 1k containing samples showed excellent flexibility.We conducted a systematic evaluation of the phase transition behavior of the material,thermal conductivity and electromagnetic shielding performance tests.Notably,the PCMs achieved a high enthalpy values(123.9–159.6 J/g).The PCMs exhibited an increase of 44.3%,and 137.5%in thermal conductivity values with higher MXene content(5 wt%)for PLR-PEG6k and PLR-PEG1k,respectively,and show high shape stability and no leakage during and after phase transition.The introduction of MXene can significantly improve the electromagnetic shielding performance of PCM composites.Typically,higher conductive samples(samples which contain high MXene contents)offer a higher EMI SE shielding,reaching a maximum of 4.67 dB at 5.6 GHz for PLR-1K-MX5.These improvements solve the main problems of organic PEG based PCMs,thus making PLR-PEG-MXene based PCMs good candidates for thermoregulators of both solid-state disks and smart phone.It is worth pointing out that the sample PLR-1k-MX5 can decrease 4.3C of the reference temperature during cellphone running.Moreover,the temperature of the protecting sheet in the simulated solid state disk with PCM was significantly lower(showing a decreasing of 7.9℃)compared with the blank sample. 展开更多
关键词 Phase change materials thermal regulation MXene POLYROTAXANE NANOCOMPOSITES
下载PDF
Mixed‑Dimensional Assembly Strategy to Construct Reduced Graphene Oxide/Carbon Foams Heterostructures for Microwave Absorption,Anti‑Corrosion and Thermal Insulation 被引量:2
19
作者 Beibei Zhan Yunpeng Qu +8 位作者 Xiaosi Qi Junfei Ding Jiao‑jing Shao Xiu Gong Jing‑Liang Yang Yanli Chen Qiong Peng Wei Zhong Hualiang Lv 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期1-18,共18页
Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective int... Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions. 展开更多
关键词 Multifunctionality Reduced graphene oxide/carbon foams 2D/3D van der Waals heterostructures Electromagnetic wave absorption thermal insulation
下载PDF
Characteristic analysis of bleeding effect on standing column well (SCW) type geothermal heat exchanger
20
作者 CHOI Hoon-ki YOO Geun-jong +2 位作者 LIM Kyung-bin LEE Sang-hoon LEE Chang-hee 《Journal of Central South University》 SCIE EI CAS 2012年第11期3202-3207,共6页
Thermal performance is the most important factor in the development of a borehole heat exchanger utilizing geothermal energy.The thermal performance is affected by many different design parameters and different operat... Thermal performance is the most important factor in the development of a borehole heat exchanger utilizing geothermal energy.The thermal performance is affected by many different design parameters and different operating conditions such as bleeding.This eventually determines the operation and cost efficiency of the borehole heat exchanger system.The thermal performance of an open standing column well (SCW) type geothermal heat exchanger was assessed under the influence of bleeding.For this,a thermal response test rig was established with line-source theory.The test rig also had a bleeding function by releasing fluid while taking additional underground water through the heat exchanger.The thermal response test was performed with an additional constant input heat source.Effective thermal conductivity and thermal resistance were obtained from the measured data.From the measurement,the effective thermal conductivity is found to have 1.47 times higher value when bleeding is applied.The thermal resistance also increases by 1.58 times compared to a non-bleeding case.This trend indicates enhanced heat transfer in the SCW type heat exchanger with a bleeding function.Bleeding,therefore,could be an effective method of achieving a high heat transfer rate in the SCW type heat exchanger with sufficient underground water supply. 展开更多
关键词 standing column well type thermal response test effective thermal conductivity thermal resistance bleeding effect
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部