With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature...With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.展开更多
The combination of electrospinning and hot pressing,namely the electrospinning-hot pressing technique(EHPT),is an efficient and convenient method for preparing nanofibrous composite materials with good energy storage ...The combination of electrospinning and hot pressing,namely the electrospinning-hot pressing technique(EHPT),is an efficient and convenient method for preparing nanofibrous composite materials with good energy storage performance.The emerging composite membrane prepared by EHPT,which exhibits the advantages of large surface area,controllable morphology,and compact structure,has attracted immense attention.In this paper,the conduction mechanism of composite membranes in thermal and electrical energy storage and the performance enhancement method based on the fabrication process of EHPT are systematically discussed.Moreover,the state-of-the-art applications of composite membranes in these two fields are introduced.In particular,in the field of thermal energy storage,EHPT-prepared membranes have longitudinal and transverse nanofibers,which generate unique thermal conductivity pathways;also,these nanofibers offer enough space for the filling of functional materials.Moreover,EHPT-prepared membranes are beneficial in thermal management systems,building energy conservation,and electrical energy storage,e.g.,improving the electrochemical properties of the separators as well as their mechanical and thermal stability.The application of electrospinning-hot pressing membranes on capacitors,lithium-ion batteries(LIBs),fuel cells,sodium-ion batteries(SIBs),and hydrogen bromine flow batteries(HBFBs)still requires examination.In the future,EHPT is expected to make the field more exciting through its own technological breakthroughs or be combined with other technologies to produce intelligent materials.展开更多
We derived an equation for saturation in carbonate reservoirs based on the electrical efficiency model in the case of lacking core data. Owing to the complex pore structure and strong heterogeneity in carbonate reserv...We derived an equation for saturation in carbonate reservoirs based on the electrical efficiency model in the case of lacking core data. Owing to the complex pore structure and strong heterogeneity in carbonate reservoirs, the relation between electrical efficiency and water porosity is either complex or linear. We proposed an electrical efficiency equation that accounts for the relation between electrical efficiency and water porosity. We also proposed a power-law relation between electrical efficiency and deep-formation resistivity and analyzed the factors controlling the error in the water saturation computations. We concluded that the calculation accuracy of the electrical efficiency is critical to the application of the saturation equation. The saturation equation was applied to the carbonate reservoirs of three wells in Iraq and Indonesia. For relative rock electrical efficiency error below 0.1, the water saturation absolute error is also below 0.1. Therefore, we infer that the proposed saturation equation generally satisfies the evaluation criteria for carbonate reservoirs.展开更多
In hot and arid regions like the Saharan area,effective methods for cooling and humidifying intake air are essential.This study explores the utilization of a water trickle cooler as a promising solution to meet this o...In hot and arid regions like the Saharan area,effective methods for cooling and humidifying intake air are essential.This study explores the utilization of a water trickle cooler as a promising solution to meet this objective.In particular,the HASSI MESSAOUD area is considered as a testbed.The water trickle cooler is chosen for its adaptability to arid conditions.Modeling results demonstrate its effectiveness in conditioning air before it enters the compressor.The cooling system achieves a significant temperature reduction of 6 to 8 degrees Celsius,enhancing mass flow rate dynamics by 3 percent compared to standard cases without cooling.Moreover,the cooling system contributes to a remarkable 10 percent reduction in power consumption of gas turbines and a notable 10 percent increase in turbine efficiency.These findings highlight the potential of water trickle coolers in improving the performance and efficiency of gas turbine systems in hot and dry climates.展开更多
The objective of this paper was to understand the increasing importance of building energy consumption, an overview of the comfort needs of the occupants is first deemed necessary in new control strategy for automatic...The objective of this paper was to understand the increasing importance of building energy consumption, an overview of the comfort needs of the occupants is first deemed necessary in new control strategy for automatic control and to present facts that characterize the energy consumption, most particularly at the workplaces level with new technology strategies. The study’s methodology applies functional and hierarchical separation. The contributions of this paper are static and dynamic models of individual users in a proposed existing building to create an office environment. To fulfill the purpose of the study and the research the following research questions will be investigated and analyzed from an architect’s perspective: (1) Are there appropriate technologies for improving energy efficiency in new buildings from the point of view the micro-grid, control and evaluation process in strategy? (2) Which sensor technology can determine the zone that needs or needs not to be considered the comfort?展开更多
Electron transport layers(ETLs)are crucial for achieving efficient and stable planar perovskite solar cells(PSCs).Reports on versatile inorganic ETLs using a simple film fabrication method and applicability for both l...Electron transport layers(ETLs)are crucial for achieving efficient and stable planar perovskite solar cells(PSCs).Reports on versatile inorganic ETLs using a simple film fabrication method and applicability for both low-cost planar regular and inverted PSCs with excellent efficiencies(>22%)and high stability are very limited.Herein,we employ a novel inorganic ZnSe as ETL for both regular and inverted PSCs to improve the efficiency and stability using a simple thermal evaporation method.The TiO_(2)-ZnSe-FAPbl_(3)heterojunction could be formed,resulting in an improved charge collection and a decreased carrier recombination further proved through theoretical calculations.The optimized regular PSCs based on TiO_(2)/ZnSe have achieved 23.25%efficiency with negligible hysteresis.In addition,the ZnSe ETL can also effectively replace the unstable bathocuproine(BCP)in inverted PSCs.Consequently,the ZnSe-based inverted device realizes a champion efficiency of 22.54%.Moreover,the regular device comprising the TiO_(2)/ZnSe layers retains 92%of its initial PCE after 10:00 h under 1 Sun continuous illumination and the inverted device comprising the C_(60)/ZnSe layers maintains over 85%of its initial PCE at 85℃for 10:00 h.This highlights one of the best results among universal ETLs in both regular and inverted perovskite photovoltaics.展开更多
On average, long-haul trucks in the U.S. use approximately 667 million gallons of fuel each year just for idling. This idling primarily facilitates climate control operations during driver rest periods. To mitigate th...On average, long-haul trucks in the U.S. use approximately 667 million gallons of fuel each year just for idling. This idling primarily facilitates climate control operations during driver rest periods. To mitigate this, our study explored ways to diminish the electrical consumption of climate control systems in class 8 trucks through innovative load reduction technologies. We utilized the CoolCalc software, developed by the National Renewable Energy Laboratory (NREL), which integrates heat transfer principles with extensive weather data from across the U.S. to mimic the environmental conditions trucks face year-round. The analysis of the CoolCalc simulations was performed using MATLAB. We assessed the impact of various technologies, including white paint, advanced curtains, and Thinsulate insulation on reducing electrical demand compared to standard conditions. Our findings indicate that trucks operating in the eastern U.S. could see electrical load reductions of up to 40%, while those in the western regions could achieve reductions as high as 55%. Such significant decreases in energy consumption mean that a 10 kWh battery system could sufficiently manage the HVAC needs of these trucks throughout the year without idling. Given that many long-haul trucks are equipped with battery systems of around 800 Ah (9.6 kWh), implementing these advanced technologies could substantially curtail the necessity for idling to power air conditioning systems.展开更多
With rapid progress,organic solar cells(OSCs)are getting closer to the target of real application.However,the stability issue is still one of the biggest challenges that have to be resolved.Especially,the thermal stab...With rapid progress,organic solar cells(OSCs)are getting closer to the target of real application.However,the stability issue is still one of the biggest challenges that have to be resolved.Especially,the thermal stability of OSCs is far from meeting the requirements of the application.Here,based on the layer-by-layer(LBL)process and by utilizing the dissolubility nature of solvent and materials,binary inverted OSCs(ITO/AZO/PM6/BTP-eC9/MoO3/Ag)with comb shape active morphology are fabricated.High efficiency of 17.13%and simultaneous superior thermal stability(with 93%of initial efficiency retained in~9:00 h under 85℃in N_(2))are demonstrated,showing superior stability to reference cells.The enhancements are attributed to the formed optimal comb shape of the active layer,which could provide a larger D/A interface,thus more charge carriers,render the active blend a more stable morphology,and protect the electrode by impeding ion's migration and corrosion.To the best of our knowledge,this is the best thermal stability of binary OSCs reported in the literature,especially when considering the high efficiency of over 17%.展开更多
Liquid metal gallium has been widely used in numerous fields, from nuclear engineering, catalysts, and energy storage to electronics owing to its remarkable thermal and electrical properties along with low viscosity a...Liquid metal gallium has been widely used in numerous fields, from nuclear engineering, catalysts, and energy storage to electronics owing to its remarkable thermal and electrical properties along with low viscosity and nontoxicity. Compared with high-temperature liquid metals, room-temperature liquid metals, such as gallium(Ga), are emerging as promising alternatives for fabricating advanced energy storage devices, such as phase change materials, by harvesting the advantageous properties of their liquid state maintained without external energy input. However, the thermal and electrical properties of liquid metals at the phase transition are rather poorly studied, limiting their practical applications. In this study, we reported on the physical properties of the solid–liquid phase transition of Ga using a custom-designed, solid–liquid electrical and thermal measurement system. We observed that the electrical conductivity of Ga progressively decreases with an increase in temperature. However, the Seebeck coefficient of Ga increases from 0.2 to 2.1 μV/K, and thermal conductivity from 7.6 to 33 W/(K·m). These electrical and thermal properties of Ga at solid–liquid phase transition would be useful for practical applications.展开更多
Electrical discharge milling(ED-milling) can be a good choice for titanium alloys machining and it was proven that its machining efficiency can be improved to compete with mechanical cutting. In order to improve energ...Electrical discharge milling(ED-milling) can be a good choice for titanium alloys machining and it was proven that its machining efficiency can be improved to compete with mechanical cutting. In order to improve energy utilization efficiency of ED-milling process, unstable arc discharge and stable arc discharge combined with normal discharge were implemented for material removal by adjusting servo control strategy. The influence of electrode rotating speed and dielectric flushing pressure on machining performance was investigated by experiments. It was found that the rotating of electrode could move the position of discharge plasma channel, and high pressure flushing could wash melted debris out the discharge gap effectively. Both electrode rotating motion and high pressure flushing are contributed to the improvement of machining efficiency.展开更多
This paper presents experimental results concerning the effect of dielectric type on ozone concentration and the efficiency of its generation in plasma reactor with two mesh electrodes.Three types of dielectric solid ...This paper presents experimental results concerning the effect of dielectric type on ozone concentration and the efficiency of its generation in plasma reactor with two mesh electrodes.Three types of dielectric solid were used in the study; glass, micanite and Kapton insulating foil. The experiments were conducted for voltage ranges from 2.3 to 13 k V. A plasma reactor equipped with two 0.3×0.3 mm^2 mesh electrodes made of acid resistant AISI 304 mesh was used in the experiments. The influence of the dielectric type on the concentration and efficiency of ozone generation was described. The resulting maximum concentration of the ozone was about 2.70–9.30 g O3 m^-3, depending on the dielectrics used. The difference between the maximum and the minimum ozone concentration depends on the dielectric used,this accounts for 70% at the variance. The reactor capacity has also been described in the paper; total Ct and dielectric capacitance Cd depending on the dielectric used and its thickness.展开更多
The performance of a 3-phase 6-pole 400 W inverter-drive induction motor was investigated using a variety of non-oriented electrical steels for stator core at PWM inverter fundamental wave frequencies of 30 to 300 Hz....The performance of a 3-phase 6-pole 400 W inverter-drive induction motor was investigated using a variety of non-oriented electrical steels for stator core at PWM inverter fundamental wave frequencies of 30 to 300 Hz. There existed an optimum Si content of the material depending on the tooth flux density. Both reduction of material thickness and stress-relief annealing of the stator core improved the motor efficiency. The influence of Si content on the efficiency was small at lower PWM frequencies, while at higher frequencies the motor efficiency increased with increasing Si content. The Cu loss WC increased and the Fe loss Wi counteractiveiy decreasedwith increasing Si content at lower frequencies; while at higher frequencies Wi had dominant effect on the efficiency. Newly developed materials RMA, having lower Fe losses after stress-relief annealing and higher flux densities with lower Si contents, showed motor efficiencies superior to conventional J1S grade materials with comparable Fe losses.展开更多
A three-dimensional approach to the effect of magnetic field incidence angle on electrical power and conversion efficiency is performed on a front-illuminated polycrystalline silicon bifacial solar cell. A solution of...A three-dimensional approach to the effect of magnetic field incidence angle on electrical power and conversion efficiency is performed on a front-illuminated polycrystalline silicon bifacial solar cell. A solution of the continuity equation allowed us to present the equations of photocurrent density, photovoltage and electric power. The influence of the angle of incidence of the magnetic field on the photocurrent density, the photovoltage and the electric power has been studied. The curves of electrical power versus dynamic junction velocity were used to extract the values of maximum electrical power and dynamic junction velocity and to calculate those of conversion efficiency. From this study, it is found that the conversion efficiency values increase with the angle of incidence of the magnetic field.展开更多
Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characteriz...Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characterized with FT-IR, XRD, TG, DSC, SEM, and high insulation resistance meter. The results demonstrate that the multi-walled carbon nanotube was carboxyl functionalized, which improved the collection between c-MWCNTs and PLA, and further realized the graft copolymerization of c-MWCNTs and PLA. There is a higher glass transition temperature and a lower pyrolysis temperature of PLA/c-MWCNTs composites than pure PLA. The c-MWCNTs gave a better dispersion than unmodified MWCNTs in the PLA matrix, and an even coating of PLA on the surface of c-MWCNTs was obtained, which increased the interfacial interaction. High insulation resistance analysis showed that the addition of c-MWCNTs increased the electric conductivity, and c-MWCNTs performed against the large dielectric coefficient and electrostatic state of PLA. These results demonstrated that c-MWCNTs modified PLA composites were beneficial for potential application in the development of heat-resisting and conductivity plastic engineering.展开更多
CuCrZr alloys were treated with the thermal stretch process at various temperatures from 100 to 300℃.The results reveal that the thermal stretch process is successfully developed to manufacture the precipitation hard...CuCrZr alloys were treated with the thermal stretch process at various temperatures from 100 to 300℃.The results reveal that the thermal stretch process is successfully developed to manufacture the precipitation hardening CuCrZr alloys with a good combination of microhardness and electrical conductivity.By increasing the tensile elongations at each temperature from 100 to 300℃,the microhardness increases whereas the electrical conductivity decreases slightly.Cr-containing precipitate phases with a Nishiyama-Wasserman orientation relationship to the copper matrix were observed by TEM.The achievement of high micro-hardness and acceptable electrical conductivity in the thermal stretch treated alloys is ascribed to the interactions of the heteroatom solution,dislocation increment,grain refinement and dispersive precipitation effect.展开更多
A kind of algorithm was provided to resolve the calculating problem of stochastic frontier model and applied to electric power industry.By Matlab,maximum likelihood estimation is adopted to evaluate σ and λ of stoch...A kind of algorithm was provided to resolve the calculating problem of stochastic frontier model and applied to electric power industry.By Matlab,maximum likelihood estimation is adopted to evaluate σ and λ of stochastic frontier model in this paper, then the technical efficiency of electric power companies is calculated. The calculated and analyzed results reflect the situation of the management of electric power industry on the whole,that is ,the electric power companies with high technical efficiency are those which have developed their modern enterprise system successfully.展开更多
The relationship between thermal/electrical conductivity enhancement in asphalt-matrix mixtures and the properties of filling conductive particles is studied. The thermal properties with filling the carbon fiber, grap...The relationship between thermal/electrical conductivity enhancement in asphalt-matrix mixtures and the properties of filling conductive particles is studied. The thermal properties with filling the carbon fiber, graphite conductive particles in asphalt-matrix mixtures are investigated. Based on the generalized effective medium theory ( EMT ), the effective thermal and electrical conductivity of carbon fiber/asphalt and graphite/asphalt composites are theoretically elucidated. The theoretical results are found to be in reasonably well agreement with the experimental data. Moreover, the theoretical and experimental results show that the large-aspect-ratio shape of particles can help to achieve a large enhancement of effective conductivity, and the use of disk-like high conductivity particles can limit the additive contents for preserving the volumetric properties and mechanical properties of asphalt composites. The generalized effective medium theory model can be used for predicting the thermal and electrical properties of asphaltmatrix composites, which is still available for most of the thermal/electrical modifications in two-phase composites.展开更多
The promotion of electric vehicles(EVs)is restricted due to their short cruising range.It is desirable to design an effective energy management strategy to improve their energy efficiency.Most existing work concerning...The promotion of electric vehicles(EVs)is restricted due to their short cruising range.It is desirable to design an effective energy management strategy to improve their energy efficiency.Most existing work concerning energy management strategies focused on hybrids rather than the EVs.The work focusing on the energy management strategy for EVs mainly uses the traditional optimization strategies,thereby limiting the advantages of energy economy.To this end,a novel energy management strategy that considered the impact of battery thermal effects was proposed with the help of reinforcement learning.The main idea was to first analyze the energy flow path of EVs,further formulize the energy management as an optimization problem,and finally propose an online strategy based on reinforcement learning to obtain the optimal strategy.Additionally,extensive simulation results have demonstrated that our strategy reduces energy consumption by at least 27.4%compared to the existing methods.展开更多
The present work enhanced the thermal conductivity of poly(p-phenylene sulfide)/expanded graphites and poly(p-phenylene sulfide)/carbon nanotubes, by incorporating composites with hexagonal boron nitride, which si...The present work enhanced the thermal conductivity of poly(p-phenylene sulfide)/expanded graphites and poly(p-phenylene sulfide)/carbon nanotubes, by incorporating composites with hexagonal boron nitride, which simultaneously succeeded in raising the electrical conductivity of the systems. A two-step mechanical processing method which includes rotating solid-state premixing and inner mixing was adopted to improve dispersion of the hybrids, contributing to the formation of an interspered thermal conductive network. Similar synergic effect in thermal conductivity enhancement was discovered in the hybrid systems regardless of the dimension difference between the two carbon fillers. Such is postulated to be the one satisfying advantage generated by the afore-mentioned network; the other is the insulativity of the hybrid systems given by the effective blockage of hexagonal boron nitride as an insulating material in our network.展开更多
Thin films of ternary compounds CuxlnyN and CuxTiyN were grown by magnetron sputtering to improve the thermal stability of Cu3N, a material that decomposes below 300 ℃, and thus promises many interesting applications...Thin films of ternary compounds CuxlnyN and CuxTiyN were grown by magnetron sputtering to improve the thermal stability of Cu3N, a material that decomposes below 300 ℃, and thus promises many interesting applications in directwriting. The effect of In or Ti incorporation in altering the structure and physical properties of copper nitride was evaluated by characterizing the film structure, surface morphology, and temperature dependence of electrical resistivity. More Ti than In can be accommodated by copper nitride without completely deteriorating the Cu3N lattice. A small amount of In or Ti can improve the crystallinity, and consequently the surface morphology. While the decomposition temperature is rarely influenced by In, the Ti-doped sample, Cu59.31Ti2.64N38.05, shows an X-ray diffraction pattern dominated by characteristic Cu3N peaks, even after annealing at 500 ℃. Both In and Ti reduce the bandgap of the original Cu3N phase, resulting in a smaller electrical resistivity at room temperature. The samples with more Ti content manifest metal-semiconductor transition when cooled from room temperature down to 50 K. These results can be useful in improving the applicability of copper-nitride-based thin films.展开更多
基金The authors are grateful for the support and funding from the Foundation of National Natural Science Foundation of China(52373089 and 51973173)Startup Foundation of Chongqing Normal University(23XLB011),Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202300561)Fundamental Research Funds for the Central Universities。
文摘With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.
基金supported by the National Natural Science Foundation of China(No.52274252)the Key Science and Technology Project of Changsha City,China(No.kq2102005)+1 种基金the Special Fund for the Construction of Innovative Province in Hunan Province,China(Nos.2020RC3038 and 2022WK4004)the Changsha City Fund for Distinguished and Innovative Young Scholars,China(No.kq1802007).
文摘The combination of electrospinning and hot pressing,namely the electrospinning-hot pressing technique(EHPT),is an efficient and convenient method for preparing nanofibrous composite materials with good energy storage performance.The emerging composite membrane prepared by EHPT,which exhibits the advantages of large surface area,controllable morphology,and compact structure,has attracted immense attention.In this paper,the conduction mechanism of composite membranes in thermal and electrical energy storage and the performance enhancement method based on the fabrication process of EHPT are systematically discussed.Moreover,the state-of-the-art applications of composite membranes in these two fields are introduced.In particular,in the field of thermal energy storage,EHPT-prepared membranes have longitudinal and transverse nanofibers,which generate unique thermal conductivity pathways;also,these nanofibers offer enough space for the filling of functional materials.Moreover,EHPT-prepared membranes are beneficial in thermal management systems,building energy conservation,and electrical energy storage,e.g.,improving the electrochemical properties of the separators as well as their mechanical and thermal stability.The application of electrospinning-hot pressing membranes on capacitors,lithium-ion batteries(LIBs),fuel cells,sodium-ion batteries(SIBs),and hydrogen bromine flow batteries(HBFBs)still requires examination.In the future,EHPT is expected to make the field more exciting through its own technological breakthroughs or be combined with other technologies to produce intelligent materials.
基金supported by the National Science and Technology Major Project(2011ZX05030)
文摘We derived an equation for saturation in carbonate reservoirs based on the electrical efficiency model in the case of lacking core data. Owing to the complex pore structure and strong heterogeneity in carbonate reservoirs, the relation between electrical efficiency and water porosity is either complex or linear. We proposed an electrical efficiency equation that accounts for the relation between electrical efficiency and water porosity. We also proposed a power-law relation between electrical efficiency and deep-formation resistivity and analyzed the factors controlling the error in the water saturation computations. We concluded that the calculation accuracy of the electrical efficiency is critical to the application of the saturation equation. The saturation equation was applied to the carbonate reservoirs of three wells in Iraq and Indonesia. For relative rock electrical efficiency error below 0.1, the water saturation absolute error is also below 0.1. Therefore, we infer that the proposed saturation equation generally satisfies the evaluation criteria for carbonate reservoirs.
文摘In hot and arid regions like the Saharan area,effective methods for cooling and humidifying intake air are essential.This study explores the utilization of a water trickle cooler as a promising solution to meet this objective.In particular,the HASSI MESSAOUD area is considered as a testbed.The water trickle cooler is chosen for its adaptability to arid conditions.Modeling results demonstrate its effectiveness in conditioning air before it enters the compressor.The cooling system achieves a significant temperature reduction of 6 to 8 degrees Celsius,enhancing mass flow rate dynamics by 3 percent compared to standard cases without cooling.Moreover,the cooling system contributes to a remarkable 10 percent reduction in power consumption of gas turbines and a notable 10 percent increase in turbine efficiency.These findings highlight the potential of water trickle coolers in improving the performance and efficiency of gas turbine systems in hot and dry climates.
文摘The objective of this paper was to understand the increasing importance of building energy consumption, an overview of the comfort needs of the occupants is first deemed necessary in new control strategy for automatic control and to present facts that characterize the energy consumption, most particularly at the workplaces level with new technology strategies. The study’s methodology applies functional and hierarchical separation. The contributions of this paper are static and dynamic models of individual users in a proposed existing building to create an office environment. To fulfill the purpose of the study and the research the following research questions will be investigated and analyzed from an architect’s perspective: (1) Are there appropriate technologies for improving energy efficiency in new buildings from the point of view the micro-grid, control and evaluation process in strategy? (2) Which sensor technology can determine the zone that needs or needs not to be considered the comfort?
基金supported by the Solar Energy Research Institute of Singapore(SERIS)at the National University of Singapore(NUS).SERIS is supported by NUS,the National Research Foundation Singapore(NRF),the Energy Market Authority of Singapore(EMA),and the Singapore Economic Development Board(EDB)support from the Science and Engineering Research Council of Singapore with Grant No.A1898b0043Singapore NRF CRP Grant No.NRF-CRP24-2020-0002.
文摘Electron transport layers(ETLs)are crucial for achieving efficient and stable planar perovskite solar cells(PSCs).Reports on versatile inorganic ETLs using a simple film fabrication method and applicability for both low-cost planar regular and inverted PSCs with excellent efficiencies(>22%)and high stability are very limited.Herein,we employ a novel inorganic ZnSe as ETL for both regular and inverted PSCs to improve the efficiency and stability using a simple thermal evaporation method.The TiO_(2)-ZnSe-FAPbl_(3)heterojunction could be formed,resulting in an improved charge collection and a decreased carrier recombination further proved through theoretical calculations.The optimized regular PSCs based on TiO_(2)/ZnSe have achieved 23.25%efficiency with negligible hysteresis.In addition,the ZnSe ETL can also effectively replace the unstable bathocuproine(BCP)in inverted PSCs.Consequently,the ZnSe-based inverted device realizes a champion efficiency of 22.54%.Moreover,the regular device comprising the TiO_(2)/ZnSe layers retains 92%of its initial PCE after 10:00 h under 1 Sun continuous illumination and the inverted device comprising the C_(60)/ZnSe layers maintains over 85%of its initial PCE at 85℃for 10:00 h.This highlights one of the best results among universal ETLs in both regular and inverted perovskite photovoltaics.
文摘On average, long-haul trucks in the U.S. use approximately 667 million gallons of fuel each year just for idling. This idling primarily facilitates climate control operations during driver rest periods. To mitigate this, our study explored ways to diminish the electrical consumption of climate control systems in class 8 trucks through innovative load reduction technologies. We utilized the CoolCalc software, developed by the National Renewable Energy Laboratory (NREL), which integrates heat transfer principles with extensive weather data from across the U.S. to mimic the environmental conditions trucks face year-round. The analysis of the CoolCalc simulations was performed using MATLAB. We assessed the impact of various technologies, including white paint, advanced curtains, and Thinsulate insulation on reducing electrical demand compared to standard conditions. Our findings indicate that trucks operating in the eastern U.S. could see electrical load reductions of up to 40%, while those in the western regions could achieve reductions as high as 55%. Such significant decreases in energy consumption mean that a 10 kWh battery system could sufficiently manage the HVAC needs of these trucks throughout the year without idling. Given that many long-haul trucks are equipped with battery systems of around 800 Ah (9.6 kWh), implementing these advanced technologies could substantially curtail the necessity for idling to power air conditioning systems.
基金support by Ningbo S&T Innovation 2025 Major Special Program,Ningbo,China,and Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices,Ningbo Institute of Materials Technology&Engineering,Chinese Academy of Sciencessupport by State Key Lab of Luminescent Materials and Devices,South China University of Technology(Skllmd-2022-03).
文摘With rapid progress,organic solar cells(OSCs)are getting closer to the target of real application.However,the stability issue is still one of the biggest challenges that have to be resolved.Especially,the thermal stability of OSCs is far from meeting the requirements of the application.Here,based on the layer-by-layer(LBL)process and by utilizing the dissolubility nature of solvent and materials,binary inverted OSCs(ITO/AZO/PM6/BTP-eC9/MoO3/Ag)with comb shape active morphology are fabricated.High efficiency of 17.13%and simultaneous superior thermal stability(with 93%of initial efficiency retained in~9:00 h under 85℃in N_(2))are demonstrated,showing superior stability to reference cells.The enhancements are attributed to the formed optimal comb shape of the active layer,which could provide a larger D/A interface,thus more charge carriers,render the active blend a more stable morphology,and protect the electrode by impeding ion's migration and corrosion.To the best of our knowledge,this is the best thermal stability of binary OSCs reported in the literature,especially when considering the high efficiency of over 17%.
基金the support provided by A*STAR and the Industry Alignment Fund through the Pharos “Hybrid thermoelectric materials for ambient applications” Program (No.1527200021)。
文摘Liquid metal gallium has been widely used in numerous fields, from nuclear engineering, catalysts, and energy storage to electronics owing to its remarkable thermal and electrical properties along with low viscosity and nontoxicity. Compared with high-temperature liquid metals, room-temperature liquid metals, such as gallium(Ga), are emerging as promising alternatives for fabricating advanced energy storage devices, such as phase change materials, by harvesting the advantageous properties of their liquid state maintained without external energy input. However, the thermal and electrical properties of liquid metals at the phase transition are rather poorly studied, limiting their practical applications. In this study, we reported on the physical properties of the solid–liquid phase transition of Ga using a custom-designed, solid–liquid electrical and thermal measurement system. We observed that the electrical conductivity of Ga progressively decreases with an increase in temperature. However, the Seebeck coefficient of Ga increases from 0.2 to 2.1 μV/K, and thermal conductivity from 7.6 to 33 W/(K·m). These electrical and thermal properties of Ga at solid–liquid phase transition would be useful for practical applications.
基金Project(MSV-2013-09)supported by State Key Laboratory of Mechanical System and Vibration,China
文摘Electrical discharge milling(ED-milling) can be a good choice for titanium alloys machining and it was proven that its machining efficiency can be improved to compete with mechanical cutting. In order to improve energy utilization efficiency of ED-milling process, unstable arc discharge and stable arc discharge combined with normal discharge were implemented for material removal by adjusting servo control strategy. The influence of electrode rotating speed and dielectric flushing pressure on machining performance was investigated by experiments. It was found that the rotating of electrode could move the position of discharge plasma channel, and high pressure flushing could wash melted debris out the discharge gap effectively. Both electrode rotating motion and high pressure flushing are contributed to the improvement of machining efficiency.
文摘This paper presents experimental results concerning the effect of dielectric type on ozone concentration and the efficiency of its generation in plasma reactor with two mesh electrodes.Three types of dielectric solid were used in the study; glass, micanite and Kapton insulating foil. The experiments were conducted for voltage ranges from 2.3 to 13 k V. A plasma reactor equipped with two 0.3×0.3 mm^2 mesh electrodes made of acid resistant AISI 304 mesh was used in the experiments. The influence of the dielectric type on the concentration and efficiency of ozone generation was described. The resulting maximum concentration of the ozone was about 2.70–9.30 g O3 m^-3, depending on the dielectrics used. The difference between the maximum and the minimum ozone concentration depends on the dielectric used,this accounts for 70% at the variance. The reactor capacity has also been described in the paper; total Ct and dielectric capacitance Cd depending on the dielectric used and its thickness.
文摘The performance of a 3-phase 6-pole 400 W inverter-drive induction motor was investigated using a variety of non-oriented electrical steels for stator core at PWM inverter fundamental wave frequencies of 30 to 300 Hz. There existed an optimum Si content of the material depending on the tooth flux density. Both reduction of material thickness and stress-relief annealing of the stator core improved the motor efficiency. The influence of Si content on the efficiency was small at lower PWM frequencies, while at higher frequencies the motor efficiency increased with increasing Si content. The Cu loss WC increased and the Fe loss Wi counteractiveiy decreasedwith increasing Si content at lower frequencies; while at higher frequencies Wi had dominant effect on the efficiency. Newly developed materials RMA, having lower Fe losses after stress-relief annealing and higher flux densities with lower Si contents, showed motor efficiencies superior to conventional J1S grade materials with comparable Fe losses.
文摘A three-dimensional approach to the effect of magnetic field incidence angle on electrical power and conversion efficiency is performed on a front-illuminated polycrystalline silicon bifacial solar cell. A solution of the continuity equation allowed us to present the equations of photocurrent density, photovoltage and electric power. The influence of the angle of incidence of the magnetic field on the photocurrent density, the photovoltage and the electric power has been studied. The curves of electrical power versus dynamic junction velocity were used to extract the values of maximum electrical power and dynamic junction velocity and to calculate those of conversion efficiency. From this study, it is found that the conversion efficiency values increase with the angle of incidence of the magnetic field.
基金Projects(21107032,51073072)supported by the National Natural Science Foundation of ChinaProjects(Y406469,Y4110555,Y4100745)supported by Natural Science Foundation of Zhejiang Province,ChinaProjects(2011AY1048-5,2011AY1030)supported by the Science Foundation of Jiaxing Science and Technology Bureau,China
文摘Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characterized with FT-IR, XRD, TG, DSC, SEM, and high insulation resistance meter. The results demonstrate that the multi-walled carbon nanotube was carboxyl functionalized, which improved the collection between c-MWCNTs and PLA, and further realized the graft copolymerization of c-MWCNTs and PLA. There is a higher glass transition temperature and a lower pyrolysis temperature of PLA/c-MWCNTs composites than pure PLA. The c-MWCNTs gave a better dispersion than unmodified MWCNTs in the PLA matrix, and an even coating of PLA on the surface of c-MWCNTs was obtained, which increased the interfacial interaction. High insulation resistance analysis showed that the addition of c-MWCNTs increased the electric conductivity, and c-MWCNTs performed against the large dielectric coefficient and electrostatic state of PLA. These results demonstrated that c-MWCNTs modified PLA composites were beneficial for potential application in the development of heat-resisting and conductivity plastic engineering.
基金Project(U1034002)supported by the National Natural Science Foundation of China(NSFC)-Guangdong Natural Science Mutual Funds
文摘CuCrZr alloys were treated with the thermal stretch process at various temperatures from 100 to 300℃.The results reveal that the thermal stretch process is successfully developed to manufacture the precipitation hardening CuCrZr alloys with a good combination of microhardness and electrical conductivity.By increasing the tensile elongations at each temperature from 100 to 300℃,the microhardness increases whereas the electrical conductivity decreases slightly.Cr-containing precipitate phases with a Nishiyama-Wasserman orientation relationship to the copper matrix were observed by TEM.The achievement of high micro-hardness and acceptable electrical conductivity in the thermal stretch treated alloys is ascribed to the interactions of the heteroatom solution,dislocation increment,grain refinement and dispersive precipitation effect.
文摘A kind of algorithm was provided to resolve the calculating problem of stochastic frontier model and applied to electric power industry.By Matlab,maximum likelihood estimation is adopted to evaluate σ and λ of stochastic frontier model in this paper, then the technical efficiency of electric power companies is calculated. The calculated and analyzed results reflect the situation of the management of electric power industry on the whole,that is ,the electric power companies with high technical efficiency are those which have developed their modern enterprise system successfully.
基金The National Natural Science Foundation of China(No.50906073,31070517)China Postdoctoral Science Foundation(No.20110491332)+1 种基金Jiangsu Planned Projects for Postdoctoral Research Funds(No.1101009B)the Science and Technology Development Plan of North Jiangsu(No.BC2012444)
文摘The relationship between thermal/electrical conductivity enhancement in asphalt-matrix mixtures and the properties of filling conductive particles is studied. The thermal properties with filling the carbon fiber, graphite conductive particles in asphalt-matrix mixtures are investigated. Based on the generalized effective medium theory ( EMT ), the effective thermal and electrical conductivity of carbon fiber/asphalt and graphite/asphalt composites are theoretically elucidated. The theoretical results are found to be in reasonably well agreement with the experimental data. Moreover, the theoretical and experimental results show that the large-aspect-ratio shape of particles can help to achieve a large enhancement of effective conductivity, and the use of disk-like high conductivity particles can limit the additive contents for preserving the volumetric properties and mechanical properties of asphalt composites. The generalized effective medium theory model can be used for predicting the thermal and electrical properties of asphaltmatrix composites, which is still available for most of the thermal/electrical modifications in two-phase composites.
基金National Natural Science Foundation of China(Nos.61772130 and 62072096)Fundamental Research Funds for the Central Universities+2 种基金China(No.2232020A-12)International Cooperation Program of Shanghai Science and Technology Commission,China(No.20220713000)Young Top-Notch Talent Program in Shanghai,China。
文摘The promotion of electric vehicles(EVs)is restricted due to their short cruising range.It is desirable to design an effective energy management strategy to improve their energy efficiency.Most existing work concerning energy management strategies focused on hybrids rather than the EVs.The work focusing on the energy management strategy for EVs mainly uses the traditional optimization strategies,thereby limiting the advantages of energy economy.To this end,a novel energy management strategy that considered the impact of battery thermal effects was proposed with the help of reinforcement learning.The main idea was to first analyze the energy flow path of EVs,further formulize the energy management as an optimization problem,and finally propose an online strategy based on reinforcement learning to obtain the optimal strategy.Additionally,extensive simulation results have demonstrated that our strategy reduces energy consumption by at least 27.4%compared to the existing methods.
基金Funded by the the National Natural Science Foundation of China(Nos.51173112,51121001)
文摘The present work enhanced the thermal conductivity of poly(p-phenylene sulfide)/expanded graphites and poly(p-phenylene sulfide)/carbon nanotubes, by incorporating composites with hexagonal boron nitride, which simultaneously succeeded in raising the electrical conductivity of the systems. A two-step mechanical processing method which includes rotating solid-state premixing and inner mixing was adopted to improve dispersion of the hybrids, contributing to the formation of an interspered thermal conductive network. Similar synergic effect in thermal conductivity enhancement was discovered in the hybrid systems regardless of the dimension difference between the two carbon fillers. Such is postulated to be the one satisfying advantage generated by the afore-mentioned network; the other is the insulativity of the hybrid systems given by the effective blockage of hexagonal boron nitride as an insulating material in our network.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51172272,10904165,and 11290161)the National Basic Research Program of China (Grant No. 2012CB933002)
文摘Thin films of ternary compounds CuxlnyN and CuxTiyN were grown by magnetron sputtering to improve the thermal stability of Cu3N, a material that decomposes below 300 ℃, and thus promises many interesting applications in directwriting. The effect of In or Ti incorporation in altering the structure and physical properties of copper nitride was evaluated by characterizing the film structure, surface morphology, and temperature dependence of electrical resistivity. More Ti than In can be accommodated by copper nitride without completely deteriorating the Cu3N lattice. A small amount of In or Ti can improve the crystallinity, and consequently the surface morphology. While the decomposition temperature is rarely influenced by In, the Ti-doped sample, Cu59.31Ti2.64N38.05, shows an X-ray diffraction pattern dominated by characteristic Cu3N peaks, even after annealing at 500 ℃. Both In and Ti reduce the bandgap of the original Cu3N phase, resulting in a smaller electrical resistivity at room temperature. The samples with more Ti content manifest metal-semiconductor transition when cooled from room temperature down to 50 K. These results can be useful in improving the applicability of copper-nitride-based thin films.