The thermal-mechanical (T-M) cycles at constant strain of a polycrystalline CuZnAl alloy have been studied in the. present work. In-situ optical microscopic observations have been made to reveal the features of the ph...The thermal-mechanical (T-M) cycles at constant strain of a polycrystalline CuZnAl alloy have been studied in the. present work. In-situ optical microscopic observations have been made to reveal the features of the phase transitions during T-M cycling. The variation of stress-temperature (S-T) curves and electrical resistance-temperature (R-T) curves accompanying with T-M cycling have been measured by tensile test and electrical resistance measurements. It has been found that the polycrystalline CuZnAl alloy shows apparent morphology changes and properties variations in the first cycle during T-M cycling which is called the first cycle effect in the present work. The stable transformation procedure in the T-M cycle is: martensiteparent phase +residual acicular martensite. This residual martensite possesses the character of stress-induced martensite.展开更多
The mechanical properties of B/Al composite were measured at room temperature in the as-fabricated condition and after thermal-mechanical cycling(TMC). The effects of TMC on microstructure and tensile fracture behavio...The mechanical properties of B/Al composite were measured at room temperature in the as-fabricated condition and after thermal-mechanical cycling(TMC). The effects of TMC on microstructure and tensile fracture behavior of B/Al composite were studied using transmission electron microscope(TEM) and scanning electron microscope(SEM). The fibers/matrix interfaces are degraded during TMC, the extent of which is enhanced with increasing the cycles, causing a measurable decrease of stageⅠmodulus of the B/Al composite. The TMC induces the dislocation generation in the aluminum matrix and the dislocation density increases with the cycles. The synergistic effect of the matrix strengthening and the interfacial degradation during TMC is found to play an important role in controlling the changes of tensile strengths and fracture behavior of the composite. The ultimate tensile strength of the composite increases with the cycles increasing. The interfaces in the B/Al composite change from the strongly-bonded states toward the appropriately-bonded ones with increasing the cycles. TMC will provide an approach of improving the strength of B/Al composites.展开更多
In January 2018,construction wrapped on Salesforce Tower(Fig.1),a 61-story office building that now dominates the skyline of San Francisco,CA,USA.In addition to being the tallest building in the city,Salesforce Tower ...In January 2018,construction wrapped on Salesforce Tower(Fig.1),a 61-story office building that now dominates the skyline of San Francisco,CA,USA.In addition to being the tallest building in the city,Salesforce Tower is the largest structure in the world with an onsite water recycling system.Built by the Australian com-pany Aquacell(Milton,NSW,Australia),the system cleans 113 m^(3)of sewage,sink,shower,and other wastewater each day for use in irrigation and flushing toilets,saving an estimated 35000 m?of water anmually[1].The building is just one of dozens in San Fran-cisco outitted with their own water recycling systems,thanks to a city mandate enacted in 2015[1].展开更多
Ameloblastoma is a benign tumor characterized by locally invasive phenotypes,leading to facial bone destruction and a high recurrence rate.However,the mechanisms governing tumor initiation and recurrence are poorly un...Ameloblastoma is a benign tumor characterized by locally invasive phenotypes,leading to facial bone destruction and a high recurrence rate.However,the mechanisms governing tumor initiation and recurrence are poorly understood.Here,we uncovered cellular landscapes and mechanisms that underlie tumor recurrence in ameloblastoma at single-cell resolution.Our results revealed that ameloblastoma exhibits five tumor subpopulations varying with respect to immune response(IR),bone remodeling(BR),tooth development(TD),epithelial development(ED),and cell cycle(CC)signatures.Of note,we found that CC ameloblastoma cells were endowed with stemness and contributed to tumor recurrence,which was dominated by the EZH2-mediated program.Targeting EZH2 effectively eliminated CC ameloblastoma cells and inhibited tumor growth in ameloblastoma patient-derived organoids.These data described the tumor subpopulation and clarified the identity,function,and regulatory mechanism of CC ameloblastoma cells,providing a potential therapeutic target for ameloblastoma.展开更多
Background:As reported,γ-tubulin(TuBG1)is related to the occurrence and development of various types of malignant tumors.However,its role in hepatocellular cancer(HCC)is not clear.The present study was to investigate...Background:As reported,γ-tubulin(TuBG1)is related to the occurrence and development of various types of malignant tumors.However,its role in hepatocellular cancer(HCC)is not clear.The present study was to investigate the relationship between TuBG1 and clinical parameters and survival in HCC patients.Methods:The correlation between TuBG1 and clinical parameters and survival in HCC patients was ex-plored by bioinformatics analysis.Immunohistochemistry was used for the verification.The molecular function of TuBG1 was measured using colony formation,scratch assay,trans-well assay and flow cytometry.Gene set enrichment analysis(GSEA)was used to pick up the enriched pathways,followed by investigating the target pathways using Western blotting.The tumor-immune system interactions and drug bank database(TISIDB)was used to evaluate TuBG1 and immunity.Based on the TuBG1-related immune genes,a prognostic model was constructed and was further validated internally and externally.Results:The bioinformatic analysis found high expressed TuBG1 in HCC tissue,which was confirmed us-ing immunohistochemistry and Western blotting.After silencing the TuBG1 in HCC cell lines,more G1 arrested cells were found,cell proliferation and invasion were inhibited,and apoptosis was promoted.Furthermore,the silence of TuBG1 increased the expressions of Ataxia-Telangiectasia and Rad-3(ATR),phospho-P38 mitogen-activated protein kinase(P-P38MAPK),phospho-P53(P-P53),B-cell lymphoma-2 associated X protein(Bax),cleaved caspase 3 and P21;decreased the expressions of B-cell lymphoma-2(Bcl-2),cyclin D1,cyclin E2,cyclin-dependent kinase 2(CDK2)and CDK4.The correlation analysis of immunohistochemistry and clinical parameters and survival data revealed that TuBG1 was negatively corre-lated with the overall survival.The constructed immune prognosis model could effectively evaluate the prognosis.Conclusions:The increased expression of TuBG1 in HCC is associated with poor prognosis,which might be involved in the occurrence and development of HCC.展开更多
The pursuit of safer and high-performance lithium-ion batteries(LIBs)has triggered extensive research activities on solid-state batteries,while challenges related to the unstable electrode-electrolyte interface hinder...The pursuit of safer and high-performance lithium-ion batteries(LIBs)has triggered extensive research activities on solid-state batteries,while challenges related to the unstable electrode-electrolyte interface hinder their practical implementation.Polymer has been used extensively to improve the cathode-electrolyte interface in garnet-based all-solid-state LIBs(ASSLBs),while it introduces new concerns about thermal stability.In this study,we propose the incorporation of a multi-functional flame-retardant triphenyl phos-phate additive into poly(ethylene oxide),acting as a thin buffer layer between LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathode and garnet electro-lyte.Through electrochemical stability tests,cycling performance evaluations,interfacial thermal stability analysis and flammability tests,improved thermal stability(capacity retention of 98.5%after 100 cycles at 60℃,and 89.6%after 50 cycles at 80℃)and safety characteristics(safe and stable cycling up to 100℃)are demonstrated.Based on various materials characterizations,the mechanism for the improved thermal stability of the interface is proposed.The results highlight the potential of multi-functional flame-retardant additives to address the challenges associated with the electrode-electrolyte interface in ASSLBs at high temperature.Efficient thermal modification in ASSLBs operating at elevated temperatures is also essential for enabling large-scale energy storage with safety being the primary concern.展开更多
Layered oxide is a promising cathode material for sodium-ion batteries because of its high-capacity,high operating voltage,and simple synthesis.Cycling performance is an important criterion for evaluating the applicat...Layered oxide is a promising cathode material for sodium-ion batteries because of its high-capacity,high operating voltage,and simple synthesis.Cycling performance is an important criterion for evaluating the application prospects of batteries.However,facing challenges,including phase transitions,ambient stability,side reactions,and irreversible anionic oxygen activity,the cycling performance of layered oxide cathode materials still cannot meet the application requirements.Therefore,this review proposes several strategies to address these challenges.First,bulk doping is introduced from three aspects:cationic single doping,anionic single doping,and multi-ion doping.Second,homogeneous surface coating and concentration gradient modification are reviewed.In addition,methods such as mixed structure design,particle engineering,high-entropy material construction,and integrated modification are proposed.Finally,a summary and outlook provide a new horizon for developing and modifying layered oxide cathode materials.展开更多
Effective calcium(Ca)management is crucial for optimizing oil palm cultivation and enhancing crop yield.This study aimed to gain insights into the dynamics of Ca concentration,accumulation,exportation,immobilization,a...Effective calcium(Ca)management is crucial for optimizing oil palm cultivation and enhancing crop yield.This study aimed to gain insights into the dynamics of Ca concentration,accumulation,exportation,immobilization,and recycling in various oil palm organs relative to plant age.The experiment was conducted at the Agropalma enterprise site in the northeastern region of Para State,Brazil,evaluating seven plant age treatments:2,3,4,5,6,7,and 8 years old.Employing a completely randomized design with four replications.The results demonstrated an age-related increase in Ca concentration in petioles,rachis,arrows,male inflorescences,peduncles,and fruits.Furthermore,Ca accumulation exhibited an upward trend in all organs with progressing plant age.Notably,the study revealed an enhanced Ca use efficiency across all plant organs in correlation with the age of oil palm cultivation.These findings underscore the dynamic nutritional demands of oil palm,influencing Ca immobilization,cycling,and export throughout its developmental stages.展开更多
In recent years,the compact development of high-density cities has sparked ongoing interest in healthy urban environments and public well-being.This study examines the relationship between cycling behaviors and the bu...In recent years,the compact development of high-density cities has sparked ongoing interest in healthy urban environments and public well-being.This study examines the relationship between cycling behaviors and the built environment of streets in Tiantongyuan Community,a typical high-density area in Beijing,China.By observing street spaces and summarizing residents’travel modes and behaviors,the study evaluates the impact of street design on cycling habits.In order to reveal the riding behavior characteristics of residents in different time periods and different street spaces,tools such as track recording APPs and the Gopro Motion Camera are employed to collect street view pictures and riding track data comprehensively,analyzing the various travel purposes of residents in Tiantongyuan community and the riding OD activity tracks of the main entrances and exits of the community.Meanwhile,by conducting the questionnaire survey of residents’travel demands and OD data of Baidu,and utilizing geographic information system(GIS)for data visualization,this study further investigates the distribution characteristics of cycling hotspots,cycling paths and cycling space,accurately identifies the cycling life circle of this community based on the spatial and temporal scales,and further puts forward the optimization strategy of the cycling network.Some cycling-friendly street space optimization strategies are suggested to deeply analyze the mechanism of the built environment of street space in high-density communities on the cycling activities and health of urban residents,with a view to provide accurate data support for the renewal of street cycling space.展开更多
Imagine a world where carbon dioxide(CO_(2))emissions that contribute to global warming are not only captured but transformed into something valuable.Scientists have now engineered a new method that could make this vi...Imagine a world where carbon dioxide(CO_(2))emissions that contribute to global warming are not only captured but transformed into something valuable.Scientists have now engineered a new method that could make this vision a reality,offering a new twist on carbon fixation.展开更多
Possenia,a trailblazing newcomer in the cycling industry,proudly announces a groundbreaking achievement:it is Switzerland’s first cycling brand to introduce the bluesign®PRODUCT label,marking an important milest...Possenia,a trailblazing newcomer in the cycling industry,proudly announces a groundbreaking achievement:it is Switzerland’s first cycling brand to introduce the bluesign®PRODUCT label,marking an important milestone in sustainable cycling apparel in Europe.These environmentally conscious,premium cycling essentials are now available on Digitec Galaxus as well as directly through Possenia’s own website.展开更多
Caleb Munyao,a 48-year-old middle-scale farmer from Kenya’s eastern region,understands the importance of water better than most.On his 13-hectare farm,where he grows maize,yellow beans,and mangoes,every drop of water...Caleb Munyao,a 48-year-old middle-scale farmer from Kenya’s eastern region,understands the importance of water better than most.On his 13-hectare farm,where he grows maize,yellow beans,and mangoes,every drop of water is precious.Kenya,like many countries in Africa,faces significant challenges in managing its water resources.The country’s water scarcity issues are exacerbated by climate change,rapid urbanisation,and inconsistent rainfall patterns.展开更多
Aiming to elucidate the hydrogen absorption/desorption cycling properties of Mg-based alloys with in-situ formed Mg_(2)Ni and LaH_(x)(x=2,3)nanocrystallines,the hydrogen storage cycle stability,hydriding/dehydriding c...Aiming to elucidate the hydrogen absorption/desorption cycling properties of Mg-based alloys with in-situ formed Mg_(2)Ni and LaH_(x)(x=2,3)nanocrystallines,the hydrogen storage cycle stability,hydriding/dehydriding cycling kinetics and thermodynamic stability of the experimental alloys have been investigated in detail.The results show that the Mg-Ni-La alloys exhibit improved hydrogen storage cycling properties and can remain storage hydrogen above 5.5 wt%after 200 cycles.With the increase of cycling numbers,the dehydrogenation rates of the experimental samples increase firstly and then gradually decrease,and eventually maintain relative stable state.Microstructure observation reveals that powders sintering and hydrogen decrepitation both exist during hydrogen absorption/desorption cycles due to repeated volume expansion and contraction.Meanwhile,the in-situ formed LaH_(x)(x=2,3)and Mg_(2)Ni nanocrystallines stabilize the microstructures of the particles and hinder the powders sintering.After 200 cycles,the average particle size of the experimental samples decreases and the specific surface area apparently increases,which leads to the decomposition temperatures of MgH_(2)and Mg_(2)NiH_(4)slightly shift to lower temperatures.Moreover,Mg_(2)Ni and LaH_(x)(x=2,3)have been proven to be stable catalysts during long-term cycling,which can still uniformly distribute within the powders after 200 cycles.展开更多
Polypyrrole(PPy)is wildly used as electrode material in supercapacitors due to its high conductivity,low cost,ease of handling,and ease of fabrication.However,limited capacitance and poor cycling stability hinder its ...Polypyrrole(PPy)is wildly used as electrode material in supercapacitors due to its high conductivity,low cost,ease of handling,and ease of fabrication.However,limited capacitance and poor cycling stability hinder its practical application.After developing carboxylated cellulose nanocrystals(CNC-COO^(-))as immobile dopants for PPy to improve its cycling stability,we investigated the effect of different commonly used salts(KCl,NaCl,KBr,and NaClO_(4))as dopants during electrode fabrication by electropolymerization.The film’s capacitance increased from 160.6 to 183.4 F g^(-1)after adding a combination of KCl and NaClO_(4) into the electrodeposition electrolyte.More importantly,the porous and interconnected PPy/CNC-COO^(-)-Cl-(Cl O_(4)^(-))_0.5 electrode film exhibited an excellent capacitance of 125.0 F g^(-1)(0.78 F cm^(-2))at a high current density of 2.0 Ag^(-1)(20 m A cm^(-2),allowing charging in less than 1 min),increasing almost 204%over PPy/CNC-COO-films.A symmetric PPy/CNC-COO^(-)-Cl-(ClO_(4)^(-))_0.5 supercapacitor retained its full capacitance after 5000 cycles,and displayed a high energy density of 5.2 Wh kg^(-1)at a power density of 25.4 W kg^(-1)(34.5μWh cm^(-2) at 1752.3μW cm^(-2)).These results reveal that the porous structure formed by doping with CNC-COO-and inorganic salts opens up more active reaction areas to store charges in PPy-based films as the stiff and ribbon-like CNC-COO-as permanent dopants improve the strength and stability of PPy-based films.Our demonstration provides a simple and practical way to deposit PPy based supercapacitors with high capacitance,fast charging,and excellent cycling stability.展开更多
The influence of thermal-cold cycling treatment on mechanical properties and microstructure of 6061 aluminum alloy was investigated by means of tensile test, optical microscopy(OM), X-ray diffraction(XRD) and transmis...The influence of thermal-cold cycling treatment on mechanical properties and microstructure of 6061 aluminum alloy was investigated by means of tensile test, optical microscopy(OM), X-ray diffraction(XRD) and transmission electron microscopy(TEM). The cryogenic treatment mechanism of the alloys was discussed. The results show that thermal-cold cycling treatment is beneficial since it produces a large number of dislocations and accelerates the ageing process of the alloy and yields the finer dispersed β" precipitates in the matrix. This variation of microstructural changes leads to more favorable mechanical properties than the other investigated states, while grain boundary precipitation is coarse and distributed discontinuously along grain boundaries, with a lower precipitation free zone(PEZ) on the both sides of precipitated phase. As a result, the tensile strength, elongation and conductivity of 6061 aluminum alloy after thermal-cold cycling treatment are 373.37 MPa, 17.2% and 28.2 MS/m, respectively. Compared with conventional T6 temper, the mechanical properties are improved significantly.展开更多
During the last decade,the rapid development of lithium-ion battery(LIB)energy storage systems has provided significant support for the efficient operation of renewable energy stations.In the coming years,the service ...During the last decade,the rapid development of lithium-ion battery(LIB)energy storage systems has provided significant support for the efficient operation of renewable energy stations.In the coming years,the service life demand of energy storage systems will be further increased to 30 years from the current 20 years on the basis of the equivalent service life of renewable energy stations.However,the life of the present LIB is far from meeting such high demand.Therefore,research on the next-generation LIB with ultra-long service life is imminent.Prelithiation technology has been widely studied as an important means to compensate for the initial coulombic efficiency loss and improve the service life of LIBs.This review systematically summarized the different prelithiation methods from anode and cathode electrodes.Moreover,the large-scale industrialization challenge and the possibility of the existing prelithiation technology are analyzed,based on three key parameters:industry compatibility,prelithiation efficiency,and energy density.Finally,the future trends of improvement in LIB performance by other overlithiated cathode materials are presented,which gives a reference for subsequent research.展开更多
High energy density Li-CO_(2)batteries have attracted much attention owing to the"two birds with one stone"feature in fixing greenhouse gas CO_(2)and providing renewable energy.However,poor reversibility of ...High energy density Li-CO_(2)batteries have attracted much attention owing to the"two birds with one stone"feature in fixing greenhouse gas CO_(2)and providing renewable energy.However,poor reversibility of the discharge product Li_(2)CO_(3)is one of the main problems that limit its application,resulting in poor cycling stability and severe polarization.Herein,copper indium sulfide(CIS),a semiconducting non-precious metal sulfide,is fabricated as cathode catalysts for high-performance Li-CO_(2)batteries.Combined with the synergistic effect of bimetallic valence bonding and coordinated electron transfer,Li-CO_(2)batteries using CIS cathodes exhibit high full specific discharge capacity,excellent rate capability and cycle stability,namely it delivers a high specific full discharge capacity of 8878μAh cm^(-2),runs steadily from 10 to 100μA cm^(-2),and performs a stable long-term cycling behavior(>1050 h)under a high energy efficiency of 84%and a low charge voltage of approximately 3.4 V at 20μA cm^(-2)within 100μAh cm^(-2).In addition,a flexible Li-CO_(2)pouch cell is constructed to reveal the potential of employing CIS to fabricate flexible high energy storage devices in practical applications.This work shows a promising development pathway toward next-generation sustainable energy storage devices.展开更多
Solid-state lithium batteries(SSLBs)solve safety issues and are potentially energy-dense alternatives to next-generation energy storage systems.Battery green recycling routes are responsible for the widespread use of ...Solid-state lithium batteries(SSLBs)solve safety issues and are potentially energy-dense alternatives to next-generation energy storage systems.Battery green recycling routes are responsible for the widespread use of SSLBs due to minimizing environmental contamination,reducing production costs,and providing a sustainable solution for resources,e.g.,saving rare earth elements(La,Ta,etc.).Herein,a solid-state recycling strategy is proposed to achieve green recycling of the crucial component solidstate electrolytes(SSEs)in spent SSLBs.The short-circuited garnet Li_(6.5)La_(3)Zr_(1.5)Ta_(0.5)O_(12)(LLZTO)is broken into fine particles and mixed with fresh particles to improve sintering activity and achieve high packing density.The continuous Li absorption process promotes sufficient grain fusion and guarantees the transformation from tetragonal phase to pure cubic phase for high-performance recycled LLZTO.The Li-ion conductivity reaches 5.80×10^(-4)S cm-1with a relative density of 95.9%.Symmetric Li cell with asrecycled LLZTO shows long-term cycling stability for 700 h at 0.3 mA cm^(-2)without any voltage hysteresis.Full cell exhibits an excellent cycling performance with a discharge capacity of 141.5 mA h g^(-1)and a capacity retention of 92.1%after 400 cycles(0.2C).This work develops an environmentally friendly and economically controllable strategy to recycle SSE from spent SSLBs,guiding future directions of SSLBs large-scale industrial application and green recycling study.展开更多
The poor structural stability and capacity retention of the high-voltage spinel-type LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)limits their further application.Herein,Al and Co were doped in LNMO materials for a more stable struct...The poor structural stability and capacity retention of the high-voltage spinel-type LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)limits their further application.Herein,Al and Co were doped in LNMO materials for a more stable structure and capacity.The LNMO,LiNi_(0.45)Al_(0.05)Mn_(1.5)O_(4)(LNAMO)and LiNi_(0.45)Co_(0.05)Mn_(1.5)O_(4)(LNCMO)were synthesized by calcination at 900℃ for 8 h,which was called as solid-phase method and applied universally in industry.XRD,FT-IR and CV test results showed the synthesized samples have cation disordering Fd-3m space group structures.Moreover,the incorporation of Al and Co increased the cation disordering of LNMO,thereby increasing the transfer rate of Li+.The SEM results showed that the doped samples performed more regular and ortho-octahedral.The EDS elemental analysis confirmed the uniform distribution of each metal element in the samples.Moreover,the doped samples showed better electrochemical properties than undoped LNMO.The LNAMO and LNCMO samples were discharged with specific capacities of 116.3 mA·h·g^(-1)and 122.8 mA·h·g^(-1)at 1 C charge/discharge rate with good capacity retention of 95.8% and 94.8% after 200 cycles at room temperature,respectively.The capacity fading phenomenon of the doped samples at 50℃ and 1 C rate was significantly improved.Further,cations doping also enhanced the rate performance,especially for the LNCMO,the discharge specific capacity of 117.9 mA·h·g^(-1)can be obtained at a rate of 5 C.展开更多
Coke drums are vertical pressure vessels used in the delayed coking process in petroleum refineries. Significant temperature variation during the delayed coking process causes damage in cracking. There were some studi...Coke drums are vertical pressure vessels used in the delayed coking process in petroleum refineries. Significant temperature variation during the delayed coking process causes damage in cracking. There were some studies on coke drums in the form of bulging and the fatigue life estimation for the coke drums, but most of them were based on strain-fatigue life curves at constant temperatures, which do not consider simultaneous cyclic temperature and mechanical loading conditions. In this study, a fatigue testing system is successfully devel- oped to allow performing thermal-mechanical fatigue (TMF) test similar to the coke drum loading condition. Two commonly used base and one clad materials of coke drums are then experimentally investigated. In addition, a comparative study between isothermal and TMF lives of these materials is conducted. The experimental findings lead to better understanding of the damage mechanisms occurring in coke drums and more accurate prediction of fatigue life of coke drum materials.展开更多
文摘The thermal-mechanical (T-M) cycles at constant strain of a polycrystalline CuZnAl alloy have been studied in the. present work. In-situ optical microscopic observations have been made to reveal the features of the phase transitions during T-M cycling. The variation of stress-temperature (S-T) curves and electrical resistance-temperature (R-T) curves accompanying with T-M cycling have been measured by tensile test and electrical resistance measurements. It has been found that the polycrystalline CuZnAl alloy shows apparent morphology changes and properties variations in the first cycle during T-M cycling which is called the first cycle effect in the present work. The stable transformation procedure in the T-M cycle is: martensiteparent phase +residual acicular martensite. This residual martensite possesses the character of stress-induced martensite.
文摘The mechanical properties of B/Al composite were measured at room temperature in the as-fabricated condition and after thermal-mechanical cycling(TMC). The effects of TMC on microstructure and tensile fracture behavior of B/Al composite were studied using transmission electron microscope(TEM) and scanning electron microscope(SEM). The fibers/matrix interfaces are degraded during TMC, the extent of which is enhanced with increasing the cycles, causing a measurable decrease of stageⅠmodulus of the B/Al composite. The TMC induces the dislocation generation in the aluminum matrix and the dislocation density increases with the cycles. The synergistic effect of the matrix strengthening and the interfacial degradation during TMC is found to play an important role in controlling the changes of tensile strengths and fracture behavior of the composite. The ultimate tensile strength of the composite increases with the cycles increasing. The interfaces in the B/Al composite change from the strongly-bonded states toward the appropriately-bonded ones with increasing the cycles. TMC will provide an approach of improving the strength of B/Al composites.
文摘In January 2018,construction wrapped on Salesforce Tower(Fig.1),a 61-story office building that now dominates the skyline of San Francisco,CA,USA.In addition to being the tallest building in the city,Salesforce Tower is the largest structure in the world with an onsite water recycling system.Built by the Australian com-pany Aquacell(Milton,NSW,Australia),the system cleans 113 m^(3)of sewage,sink,shower,and other wastewater each day for use in irrigation and flushing toilets,saving an estimated 35000 m?of water anmually[1].The building is just one of dozens in San Fran-cisco outitted with their own water recycling systems,thanks to a city mandate enacted in 2015[1].
基金supported by the National Natural Science Foundation of China(82141112)Guangdong Financial Fund for High-Caliber Hospital Construction(174-2018-XMZC-0001-03-0125/D-14)C.W.and the Clinical Research Program of 9th People’s Hospital,Shanghai Jiao Tong University School of Medicine(JYLJ202112).
文摘Ameloblastoma is a benign tumor characterized by locally invasive phenotypes,leading to facial bone destruction and a high recurrence rate.However,the mechanisms governing tumor initiation and recurrence are poorly understood.Here,we uncovered cellular landscapes and mechanisms that underlie tumor recurrence in ameloblastoma at single-cell resolution.Our results revealed that ameloblastoma exhibits five tumor subpopulations varying with respect to immune response(IR),bone remodeling(BR),tooth development(TD),epithelial development(ED),and cell cycle(CC)signatures.Of note,we found that CC ameloblastoma cells were endowed with stemness and contributed to tumor recurrence,which was dominated by the EZH2-mediated program.Targeting EZH2 effectively eliminated CC ameloblastoma cells and inhibited tumor growth in ameloblastoma patient-derived organoids.These data described the tumor subpopulation and clarified the identity,function,and regulatory mechanism of CC ameloblastoma cells,providing a potential therapeutic target for ameloblastoma.
基金This work was supported by grants from the National Natural Science Foundation of China(52072005 and 51872279).
文摘Background:As reported,γ-tubulin(TuBG1)is related to the occurrence and development of various types of malignant tumors.However,its role in hepatocellular cancer(HCC)is not clear.The present study was to investigate the relationship between TuBG1 and clinical parameters and survival in HCC patients.Methods:The correlation between TuBG1 and clinical parameters and survival in HCC patients was ex-plored by bioinformatics analysis.Immunohistochemistry was used for the verification.The molecular function of TuBG1 was measured using colony formation,scratch assay,trans-well assay and flow cytometry.Gene set enrichment analysis(GSEA)was used to pick up the enriched pathways,followed by investigating the target pathways using Western blotting.The tumor-immune system interactions and drug bank database(TISIDB)was used to evaluate TuBG1 and immunity.Based on the TuBG1-related immune genes,a prognostic model was constructed and was further validated internally and externally.Results:The bioinformatic analysis found high expressed TuBG1 in HCC tissue,which was confirmed us-ing immunohistochemistry and Western blotting.After silencing the TuBG1 in HCC cell lines,more G1 arrested cells were found,cell proliferation and invasion were inhibited,and apoptosis was promoted.Furthermore,the silence of TuBG1 increased the expressions of Ataxia-Telangiectasia and Rad-3(ATR),phospho-P38 mitogen-activated protein kinase(P-P38MAPK),phospho-P53(P-P53),B-cell lymphoma-2 associated X protein(Bax),cleaved caspase 3 and P21;decreased the expressions of B-cell lymphoma-2(Bcl-2),cyclin D1,cyclin E2,cyclin-dependent kinase 2(CDK2)and CDK4.The correlation analysis of immunohistochemistry and clinical parameters and survival data revealed that TuBG1 was negatively corre-lated with the overall survival.The constructed immune prognosis model could effectively evaluate the prognosis.Conclusions:The increased expression of TuBG1 in HCC is associated with poor prognosis,which might be involved in the occurrence and development of HCC.
基金This work was supported by the Australian Research Council via Discovery Projects(Nos.DP200103315,DP200103332 and DP230100685)Linkage Projects(No.LP220200920).The authors acknowledge the Microscopy and Microanalysis Facility—John de Laeter Centre,Curtin University for the scientific and technical assistance of material characterizations.L.Zhao and C.Cao would like to acknowledge the PhD scholarship supported by BLACKSTONE Minerals Ltd.
文摘The pursuit of safer and high-performance lithium-ion batteries(LIBs)has triggered extensive research activities on solid-state batteries,while challenges related to the unstable electrode-electrolyte interface hinder their practical implementation.Polymer has been used extensively to improve the cathode-electrolyte interface in garnet-based all-solid-state LIBs(ASSLBs),while it introduces new concerns about thermal stability.In this study,we propose the incorporation of a multi-functional flame-retardant triphenyl phos-phate additive into poly(ethylene oxide),acting as a thin buffer layer between LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathode and garnet electro-lyte.Through electrochemical stability tests,cycling performance evaluations,interfacial thermal stability analysis and flammability tests,improved thermal stability(capacity retention of 98.5%after 100 cycles at 60℃,and 89.6%after 50 cycles at 80℃)and safety characteristics(safe and stable cycling up to 100℃)are demonstrated.Based on various materials characterizations,the mechanism for the improved thermal stability of the interface is proposed.The results highlight the potential of multi-functional flame-retardant additives to address the challenges associated with the electrode-electrolyte interface in ASSLBs at high temperature.Efficient thermal modification in ASSLBs operating at elevated temperatures is also essential for enabling large-scale energy storage with safety being the primary concern.
基金the Fundamental Research Funds for the Central Universities,China(No.06500177)the National Natural Science Foundation of China Joint Fund Project(No.U1764255)。
文摘Layered oxide is a promising cathode material for sodium-ion batteries because of its high-capacity,high operating voltage,and simple synthesis.Cycling performance is an important criterion for evaluating the application prospects of batteries.However,facing challenges,including phase transitions,ambient stability,side reactions,and irreversible anionic oxygen activity,the cycling performance of layered oxide cathode materials still cannot meet the application requirements.Therefore,this review proposes several strategies to address these challenges.First,bulk doping is introduced from three aspects:cationic single doping,anionic single doping,and multi-ion doping.Second,homogeneous surface coating and concentration gradient modification are reviewed.In addition,methods such as mixed structure design,particle engineering,high-entropy material construction,and integrated modification are proposed.Finally,a summary and outlook provide a new horizon for developing and modifying layered oxide cathode materials.
文摘Effective calcium(Ca)management is crucial for optimizing oil palm cultivation and enhancing crop yield.This study aimed to gain insights into the dynamics of Ca concentration,accumulation,exportation,immobilization,and recycling in various oil palm organs relative to plant age.The experiment was conducted at the Agropalma enterprise site in the northeastern region of Para State,Brazil,evaluating seven plant age treatments:2,3,4,5,6,7,and 8 years old.Employing a completely randomized design with four replications.The results demonstrated an age-related increase in Ca concentration in petioles,rachis,arrows,male inflorescences,peduncles,and fruits.Furthermore,Ca accumulation exhibited an upward trend in all organs with progressing plant age.Notably,the study revealed an enhanced Ca use efficiency across all plant organs in correlation with the age of oil palm cultivation.These findings underscore the dynamic nutritional demands of oil palm,influencing Ca immobilization,cycling,and export throughout its developmental stages.
文摘In recent years,the compact development of high-density cities has sparked ongoing interest in healthy urban environments and public well-being.This study examines the relationship between cycling behaviors and the built environment of streets in Tiantongyuan Community,a typical high-density area in Beijing,China.By observing street spaces and summarizing residents’travel modes and behaviors,the study evaluates the impact of street design on cycling habits.In order to reveal the riding behavior characteristics of residents in different time periods and different street spaces,tools such as track recording APPs and the Gopro Motion Camera are employed to collect street view pictures and riding track data comprehensively,analyzing the various travel purposes of residents in Tiantongyuan community and the riding OD activity tracks of the main entrances and exits of the community.Meanwhile,by conducting the questionnaire survey of residents’travel demands and OD data of Baidu,and utilizing geographic information system(GIS)for data visualization,this study further investigates the distribution characteristics of cycling hotspots,cycling paths and cycling space,accurately identifies the cycling life circle of this community based on the spatial and temporal scales,and further puts forward the optimization strategy of the cycling network.Some cycling-friendly street space optimization strategies are suggested to deeply analyze the mechanism of the built environment of street space in high-density communities on the cycling activities and health of urban residents,with a view to provide accurate data support for the renewal of street cycling space.
文摘Imagine a world where carbon dioxide(CO_(2))emissions that contribute to global warming are not only captured but transformed into something valuable.Scientists have now engineered a new method that could make this vision a reality,offering a new twist on carbon fixation.
文摘Possenia,a trailblazing newcomer in the cycling industry,proudly announces a groundbreaking achievement:it is Switzerland’s first cycling brand to introduce the bluesign®PRODUCT label,marking an important milestone in sustainable cycling apparel in Europe.These environmentally conscious,premium cycling essentials are now available on Digitec Galaxus as well as directly through Possenia’s own website.
文摘Caleb Munyao,a 48-year-old middle-scale farmer from Kenya’s eastern region,understands the importance of water better than most.On his 13-hectare farm,where he grows maize,yellow beans,and mangoes,every drop of water is precious.Kenya,like many countries in Africa,faces significant challenges in managing its water resources.The country’s water scarcity issues are exacerbated by climate change,rapid urbanisation,and inconsistent rainfall patterns.
基金supported by Natural Science Foundation of Shaanxi Province,China(2017JM5079)The 111 project(No.B08040)is also acknowledged.
文摘Aiming to elucidate the hydrogen absorption/desorption cycling properties of Mg-based alloys with in-situ formed Mg_(2)Ni and LaH_(x)(x=2,3)nanocrystallines,the hydrogen storage cycle stability,hydriding/dehydriding cycling kinetics and thermodynamic stability of the experimental alloys have been investigated in detail.The results show that the Mg-Ni-La alloys exhibit improved hydrogen storage cycling properties and can remain storage hydrogen above 5.5 wt%after 200 cycles.With the increase of cycling numbers,the dehydrogenation rates of the experimental samples increase firstly and then gradually decrease,and eventually maintain relative stable state.Microstructure observation reveals that powders sintering and hydrogen decrepitation both exist during hydrogen absorption/desorption cycles due to repeated volume expansion and contraction.Meanwhile,the in-situ formed LaH_(x)(x=2,3)and Mg_(2)Ni nanocrystallines stabilize the microstructures of the particles and hinder the powders sintering.After 200 cycles,the average particle size of the experimental samples decreases and the specific surface area apparently increases,which leads to the decomposition temperatures of MgH_(2)and Mg_(2)NiH_(4)slightly shift to lower temperatures.Moreover,Mg_(2)Ni and LaH_(x)(x=2,3)have been proven to be stable catalysts during long-term cycling,which can still uniformly distribute within the powders after 200 cycles.
基金supported by the Research Foundation Flanders(grant 3E181170)supported by the China Scholarship Council(CSC,201806220066)。
文摘Polypyrrole(PPy)is wildly used as electrode material in supercapacitors due to its high conductivity,low cost,ease of handling,and ease of fabrication.However,limited capacitance and poor cycling stability hinder its practical application.After developing carboxylated cellulose nanocrystals(CNC-COO^(-))as immobile dopants for PPy to improve its cycling stability,we investigated the effect of different commonly used salts(KCl,NaCl,KBr,and NaClO_(4))as dopants during electrode fabrication by electropolymerization.The film’s capacitance increased from 160.6 to 183.4 F g^(-1)after adding a combination of KCl and NaClO_(4) into the electrodeposition electrolyte.More importantly,the porous and interconnected PPy/CNC-COO^(-)-Cl-(Cl O_(4)^(-))_0.5 electrode film exhibited an excellent capacitance of 125.0 F g^(-1)(0.78 F cm^(-2))at a high current density of 2.0 Ag^(-1)(20 m A cm^(-2),allowing charging in less than 1 min),increasing almost 204%over PPy/CNC-COO-films.A symmetric PPy/CNC-COO^(-)-Cl-(ClO_(4)^(-))_0.5 supercapacitor retained its full capacitance after 5000 cycles,and displayed a high energy density of 5.2 Wh kg^(-1)at a power density of 25.4 W kg^(-1)(34.5μWh cm^(-2) at 1752.3μW cm^(-2)).These results reveal that the porous structure formed by doping with CNC-COO-and inorganic salts opens up more active reaction areas to store charges in PPy-based films as the stiff and ribbon-like CNC-COO-as permanent dopants improve the strength and stability of PPy-based films.Our demonstration provides a simple and practical way to deposit PPy based supercapacitors with high capacitance,fast charging,and excellent cycling stability.
基金Key Scientific and Technological Project of Henan Province (No.222102230021)Key Scientific Research Projects of Universities in Henan Province (No.21B430003)The Training Program for Young Backbone Teachers in Henan Higher Education Institutions (No.2019GGJS266)。
文摘The influence of thermal-cold cycling treatment on mechanical properties and microstructure of 6061 aluminum alloy was investigated by means of tensile test, optical microscopy(OM), X-ray diffraction(XRD) and transmission electron microscopy(TEM). The cryogenic treatment mechanism of the alloys was discussed. The results show that thermal-cold cycling treatment is beneficial since it produces a large number of dislocations and accelerates the ageing process of the alloy and yields the finer dispersed β" precipitates in the matrix. This variation of microstructural changes leads to more favorable mechanical properties than the other investigated states, while grain boundary precipitation is coarse and distributed discontinuously along grain boundaries, with a lower precipitation free zone(PEZ) on the both sides of precipitated phase. As a result, the tensile strength, elongation and conductivity of 6061 aluminum alloy after thermal-cold cycling treatment are 373.37 MPa, 17.2% and 28.2 MS/m, respectively. Compared with conventional T6 temper, the mechanical properties are improved significantly.
基金funded by the National Natural Science Foundation of China(No.U21A20170(X.He))the Ministry of Science and Technology of China(No.2019YFE0100200(X.He)and 2019YFA0705703(L.Wang))the Tsinghua University Initiative Scientific Research Program(No.2019Z02UTY06(X.He)and 2019THFS0132(L.Wang)).The authors also thank Joint Work Plan for Research Projects under the Clean Vehicles Consortium at U.S.and China-Clean Energy Research Center(CERC-CVC2.0,2016-2020)
文摘During the last decade,the rapid development of lithium-ion battery(LIB)energy storage systems has provided significant support for the efficient operation of renewable energy stations.In the coming years,the service life demand of energy storage systems will be further increased to 30 years from the current 20 years on the basis of the equivalent service life of renewable energy stations.However,the life of the present LIB is far from meeting such high demand.Therefore,research on the next-generation LIB with ultra-long service life is imminent.Prelithiation technology has been widely studied as an important means to compensate for the initial coulombic efficiency loss and improve the service life of LIBs.This review systematically summarized the different prelithiation methods from anode and cathode electrodes.Moreover,the large-scale industrialization challenge and the possibility of the existing prelithiation technology are analyzed,based on three key parameters:industry compatibility,prelithiation efficiency,and energy density.Finally,the future trends of improvement in LIB performance by other overlithiated cathode materials are presented,which gives a reference for subsequent research.
基金supports by the National Natural Science Foundation of China(No.52072352,21875226,U20A2072,52102320)the Foundation for the Youth S&T Innovation Team of Sichuan Province(2020JDTD0035)+1 种基金Tianfu Rencai Plan,the Science Foundation for Distinguished Young Scholars of Sichuan Province(2017JQ0036)the Chengdu Talent plan,Science and Technology Projects for Administration for Market Regulation of Sichuan Province(SCSJ2020016).
文摘High energy density Li-CO_(2)batteries have attracted much attention owing to the"two birds with one stone"feature in fixing greenhouse gas CO_(2)and providing renewable energy.However,poor reversibility of the discharge product Li_(2)CO_(3)is one of the main problems that limit its application,resulting in poor cycling stability and severe polarization.Herein,copper indium sulfide(CIS),a semiconducting non-precious metal sulfide,is fabricated as cathode catalysts for high-performance Li-CO_(2)batteries.Combined with the synergistic effect of bimetallic valence bonding and coordinated electron transfer,Li-CO_(2)batteries using CIS cathodes exhibit high full specific discharge capacity,excellent rate capability and cycle stability,namely it delivers a high specific full discharge capacity of 8878μAh cm^(-2),runs steadily from 10 to 100μA cm^(-2),and performs a stable long-term cycling behavior(>1050 h)under a high energy efficiency of 84%and a low charge voltage of approximately 3.4 V at 20μA cm^(-2)within 100μAh cm^(-2).In addition,a flexible Li-CO_(2)pouch cell is constructed to reveal the potential of employing CIS to fabricate flexible high energy storage devices in practical applications.This work shows a promising development pathway toward next-generation sustainable energy storage devices.
基金supported by the China National Postdoctoral Program for Innovative Talents(BX20220384)the National Natural Science Foundation of China(52175301)。
文摘Solid-state lithium batteries(SSLBs)solve safety issues and are potentially energy-dense alternatives to next-generation energy storage systems.Battery green recycling routes are responsible for the widespread use of SSLBs due to minimizing environmental contamination,reducing production costs,and providing a sustainable solution for resources,e.g.,saving rare earth elements(La,Ta,etc.).Herein,a solid-state recycling strategy is proposed to achieve green recycling of the crucial component solidstate electrolytes(SSEs)in spent SSLBs.The short-circuited garnet Li_(6.5)La_(3)Zr_(1.5)Ta_(0.5)O_(12)(LLZTO)is broken into fine particles and mixed with fresh particles to improve sintering activity and achieve high packing density.The continuous Li absorption process promotes sufficient grain fusion and guarantees the transformation from tetragonal phase to pure cubic phase for high-performance recycled LLZTO.The Li-ion conductivity reaches 5.80×10^(-4)S cm-1with a relative density of 95.9%.Symmetric Li cell with asrecycled LLZTO shows long-term cycling stability for 700 h at 0.3 mA cm^(-2)without any voltage hysteresis.Full cell exhibits an excellent cycling performance with a discharge capacity of 141.5 mA h g^(-1)and a capacity retention of 92.1%after 400 cycles(0.2C).This work develops an environmentally friendly and economically controllable strategy to recycle SSE from spent SSLBs,guiding future directions of SSLBs large-scale industrial application and green recycling study.
基金supported by the National Natural Science Foundation of China(52022109 and 51834008)Beijing Municipal Natural Science Foundation(2202047)+1 种基金National Key Research and Development Program of China(2021YFC2901100)Science Foundation of China University of Petroleum,Beijing(2462021QNX2010,2462020YXZZ019,2462020YXZZ016,and 2462022QZDX008)。
文摘The poor structural stability and capacity retention of the high-voltage spinel-type LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)limits their further application.Herein,Al and Co were doped in LNMO materials for a more stable structure and capacity.The LNMO,LiNi_(0.45)Al_(0.05)Mn_(1.5)O_(4)(LNAMO)and LiNi_(0.45)Co_(0.05)Mn_(1.5)O_(4)(LNCMO)were synthesized by calcination at 900℃ for 8 h,which was called as solid-phase method and applied universally in industry.XRD,FT-IR and CV test results showed the synthesized samples have cation disordering Fd-3m space group structures.Moreover,the incorporation of Al and Co increased the cation disordering of LNMO,thereby increasing the transfer rate of Li+.The SEM results showed that the doped samples performed more regular and ortho-octahedral.The EDS elemental analysis confirmed the uniform distribution of each metal element in the samples.Moreover,the doped samples showed better electrochemical properties than undoped LNMO.The LNAMO and LNCMO samples were discharged with specific capacities of 116.3 mA·h·g^(-1)and 122.8 mA·h·g^(-1)at 1 C charge/discharge rate with good capacity retention of 95.8% and 94.8% after 200 cycles at room temperature,respectively.The capacity fading phenomenon of the doped samples at 50℃ and 1 C rate was significantly improved.Further,cations doping also enhanced the rate performance,especially for the LNCMO,the discharge specific capacity of 117.9 mA·h·g^(-1)can be obtained at a rate of 5 C.
基金supported by a Collaborative Research and Development (CRD) Grants of The National Science and Engineering Research Council (NSERC) of Canada (CRD 350634-07 and CRDPJ 403054-10)
文摘Coke drums are vertical pressure vessels used in the delayed coking process in petroleum refineries. Significant temperature variation during the delayed coking process causes damage in cracking. There were some studies on coke drums in the form of bulging and the fatigue life estimation for the coke drums, but most of them were based on strain-fatigue life curves at constant temperatures, which do not consider simultaneous cyclic temperature and mechanical loading conditions. In this study, a fatigue testing system is successfully devel- oped to allow performing thermal-mechanical fatigue (TMF) test similar to the coke drum loading condition. Two commonly used base and one clad materials of coke drums are then experimentally investigated. In addition, a comparative study between isothermal and TMF lives of these materials is conducted. The experimental findings lead to better understanding of the damage mechanisms occurring in coke drums and more accurate prediction of fatigue life of coke drum materials.