An ITER torus cryo-pump housing (TCPH), which encloses a torus cryo-pump, is connected to a vacuum vessel (VV) by a set of associated double bellows. There are complicated loads due to two different operating stat...An ITER torus cryo-pump housing (TCPH), which encloses a torus cryo-pump, is connected to a vacuum vessel (VV) by a set of associated double bellows. There are complicated loads due to two different operating states (pumping and regeneration) and foreseeable accidents with the cryo-pump. This paper describes a thermal-structural coupled analysis of the present TCPH according to tho allowatfle stress criteria of RCC-MR, in which the worst cases and outcomes of various load combinations are obtained. Meanwhile, optimization of the structure has been carried oul, to obtain positive analysis results and an adequate safety margin.展开更多
The thermal balance state of high-speed and heavy-load gear transmissionsystem has an important influence on the performance and failure of geartransmission and the design of gear lubrication system. Excessive surface...The thermal balance state of high-speed and heavy-load gear transmissionsystem has an important influence on the performance and failure of geartransmission and the design of gear lubrication system. Excessive surfacetemperature of gear teeth is the main cause of gluing failure of gear contactsurface. To investigate the gear heat distribution in meshing processand discuss the effect of thermal conduction on heat distribution,a finiteelement model of spur gear is presented in the paper which can representgeneral involute spur gears. And a simulation approach is use to calculategear heat distribution in meshing process. By comparing with theoreticalcalculation, the correctness of the simulation method is verified, and theheat distribution of spur gear under the condition of heat conduction isfurther analyzed. The difference between the calculation results with heatconduction and without heat conduction is compared. The research hascertain reference significance for dry gear hobbing and the same type ofthermal-structural coupling analysis.展开更多
To investigate the thermo-mechanical response of channel wall nozzle under cyclic working loads,the fnite volume fluid-thermal coupling calculation method and the fnite element thermal-structural coupling analysis tec...To investigate the thermo-mechanical response of channel wall nozzle under cyclic working loads,the fnite volume fluid-thermal coupling calculation method and the fnite element thermal-structural coupling analysis technique are applied.In combination with the material lowcycle fatigue behavior,the modifed continuous damage model on the basics of local strain approach is adopted to analyze the fatigue damage distribution and accumulation with increasing nozzle work cycles.Simulation results have shown that the variation of the non-uniform temperature distribution of channel wall nozzle during cyclic work plays a signifcant role in the thermal-structural response by altering the material properties;the thermal-mechanical loads interaction results in serious deformation mainly in the front region of slotted liner.In particular,the maximal cyclic strains appear in the intersecting regions of liner gas side wall and symmetric planes of channel and rib,where the fatigue failure takes place initially;with the increase in nozzle work cycles,the residual plastic strain accumulates linearly,and the strain amplitude and increment in each work cycle are separately equal,but the fatigue damage grows up nonlinearly.As a result,a simplifed nonlinear damage accumulation approach has been suggested to estimate the fatigue service life of channel wall nozzle.The predicted node life is obviously conservative to the Miner's life.In addition,several workable methods have also been proposed to improve the channel wall nozzle durability.展开更多
This paper quantitatively evaluated the fatigue life of concrete around the air-water boundary layer of bridge piers located in inland rivers,considering the long-term climate.The paper suggests a method to predict th...This paper quantitatively evaluated the fatigue life of concrete around the air-water boundary layer of bridge piers located in inland rivers,considering the long-term climate.The paper suggests a method to predict the low-cycle fatigue life by demonstrating a thermal-fluid-structural analysis of bridge pier concrete according to long-term climate such as temperature,velocity and pressure of air and water in the process of freezing and thawing in winter.In addition,it proposes a reinforcing method to increase the life of damaged piers and proves the feasibility of the proposed method with numerical comparison experiment.展开更多
In this paper, in order to predict the residual deformation of thick spherical structure, a welding program is compiled in APDL language based on Ansys and a numerical welding experiment of a welding example is carrie...In this paper, in order to predict the residual deformation of thick spherical structure, a welding program is compiled in APDL language based on Ansys and a numerical welding experiment of a welding example is carried out. The temperature field of welding was simulated firstly, then a thermal-structure coupling analysis was carried out, and at last the residual stress and deformation after welding were got. After that, the numerical experiment result was compared with physical experiment one. The comparative analysis shows that the numerical simulation fits well with physical experiment. On the basis of that, a three-dimensional numerical experiment of a thick spherical shell structure was carried out to get the changing rule of stress and deformation of a thick spherical shell structure during welding. The research is of great value to the prediction of residual deformation and high precision machining.展开更多
Thermally induced vibration(TIV)is a typical failure of large-scale space structures.This paper reports a laboratory experiment that aims to investigate this unusual structural behavior of complex engineering structur...Thermally induced vibration(TIV)is a typical failure of large-scale space structures.This paper reports a laboratory experiment that aims to investigate this unusual structural behavior of complex engineering structures.With the help of a Fourier finite element program,the fixing of a space boom section is well designed so that the TIV can be successfully observed.Although the observed torsional vibration mode is different from the bending vibration mode predicted by the classic theory based on a simple beam model,it can be successfully explained by the general thermal structural interaction theory.This demonstrates the validity of the theoretical model and the necessity of using finite element program to analyze complex engineering structures.展开更多
The residual stress generated in the manufacturing process of inertial platform causes the drift of inertial platform parameters in long-term storage condition.However,the existing temperature cycling experiment could...The residual stress generated in the manufacturing process of inertial platform causes the drift of inertial platform parameters in long-term storage condition.However,the existing temperature cycling experiment could not meet the increased repeatability technical requirements of inertial platform parameters.In order to solve this problem,in this paper,firstly the Unigraphics(UG) software and the interface compatibility of ANSYS software are used to establish the inertial platform finite element model.Secondly,the residual stress is loaded into finite element model by ANSYS function editor in the form of surface loads to analyze the efficiency.And then,the generation based on ANSYS simulation inertial platform to accelerate the stability of experiment profile is achieved by the application of the analysis method of orthogonal experimental design and ANSYS thermal-structural coupling.The optimum accelerated stability experiment profile is determined finally,which realizes the rapid,effective release of inertial platform residual stress.The research methodology and conclusion of this paper have great theoretical and practical significance to the production technology of inertial platform.展开更多
The severe internal heat generation of the motorized spindle system causes uneven temperature dis- tribution, and will affect the vibration characteristics of the system. Based on the thermal analysis about the motori...The severe internal heat generation of the motorized spindle system causes uneven temperature dis- tribution, and will affect the vibration characteristics of the system. Based on the thermal analysis about the motorized spindle by finite element method (FEM), the thermal deformations of the spindle system are calculated by the thermal structure coupling simulation, and the thermal deformations of the rotor and the bearing units are extracted to analyze the bearing stiffness changes so that the modal characteristics of the rotor can be simulated in different thermal state conditions. And then the rotor thermal deformation experiment and the modal experiment of spindle by exciting with hammer are performed. The result shows that the thermal state of the motorized spindle system has a significant influence on the natural frequency of the rotor, which can be carefully treated when a spindle system is designed.展开更多
基金supported by International Thermonuclear Experimental Reactor (ITER) Specific Plan in China (2009GB101004)
文摘An ITER torus cryo-pump housing (TCPH), which encloses a torus cryo-pump, is connected to a vacuum vessel (VV) by a set of associated double bellows. There are complicated loads due to two different operating states (pumping and regeneration) and foreseeable accidents with the cryo-pump. This paper describes a thermal-structural coupled analysis of the present TCPH according to tho allowatfle stress criteria of RCC-MR, in which the worst cases and outcomes of various load combinations are obtained. Meanwhile, optimization of the structure has been carried oul, to obtain positive analysis results and an adequate safety margin.
文摘The thermal balance state of high-speed and heavy-load gear transmissionsystem has an important influence on the performance and failure of geartransmission and the design of gear lubrication system. Excessive surfacetemperature of gear teeth is the main cause of gluing failure of gear contactsurface. To investigate the gear heat distribution in meshing processand discuss the effect of thermal conduction on heat distribution,a finiteelement model of spur gear is presented in the paper which can representgeneral involute spur gears. And a simulation approach is use to calculategear heat distribution in meshing process. By comparing with theoreticalcalculation, the correctness of the simulation method is verified, and theheat distribution of spur gear under the condition of heat conduction isfurther analyzed. The difference between the calculation results with heatconduction and without heat conduction is compared. The research hascertain reference significance for dry gear hobbing and the same type ofthermal-structural coupling analysis.
文摘To investigate the thermo-mechanical response of channel wall nozzle under cyclic working loads,the fnite volume fluid-thermal coupling calculation method and the fnite element thermal-structural coupling analysis technique are applied.In combination with the material lowcycle fatigue behavior,the modifed continuous damage model on the basics of local strain approach is adopted to analyze the fatigue damage distribution and accumulation with increasing nozzle work cycles.Simulation results have shown that the variation of the non-uniform temperature distribution of channel wall nozzle during cyclic work plays a signifcant role in the thermal-structural response by altering the material properties;the thermal-mechanical loads interaction results in serious deformation mainly in the front region of slotted liner.In particular,the maximal cyclic strains appear in the intersecting regions of liner gas side wall and symmetric planes of channel and rib,where the fatigue failure takes place initially;with the increase in nozzle work cycles,the residual plastic strain accumulates linearly,and the strain amplitude and increment in each work cycle are separately equal,but the fatigue damage grows up nonlinearly.As a result,a simplifed nonlinear damage accumulation approach has been suggested to estimate the fatigue service life of channel wall nozzle.The predicted node life is obviously conservative to the Miner's life.In addition,several workable methods have also been proposed to improve the channel wall nozzle durability.
基金the National Program on Key Science Research of the DPR of Korea.(Grant No.0305014-01)。
文摘This paper quantitatively evaluated the fatigue life of concrete around the air-water boundary layer of bridge piers located in inland rivers,considering the long-term climate.The paper suggests a method to predict the low-cycle fatigue life by demonstrating a thermal-fluid-structural analysis of bridge pier concrete according to long-term climate such as temperature,velocity and pressure of air and water in the process of freezing and thawing in winter.In addition,it proposes a reinforcing method to increase the life of damaged piers and proves the feasibility of the proposed method with numerical comparison experiment.
文摘In this paper, in order to predict the residual deformation of thick spherical structure, a welding program is compiled in APDL language based on Ansys and a numerical welding experiment of a welding example is carried out. The temperature field of welding was simulated firstly, then a thermal-structure coupling analysis was carried out, and at last the residual stress and deformation after welding were got. After that, the numerical experiment result was compared with physical experiment one. The comparative analysis shows that the numerical simulation fits well with physical experiment. On the basis of that, a three-dimensional numerical experiment of a thick spherical shell structure was carried out to get the changing rule of stress and deformation of a thick spherical shell structure during welding. The research is of great value to the prediction of residual deformation and high precision machining.
文摘Thermally induced vibration(TIV)is a typical failure of large-scale space structures.This paper reports a laboratory experiment that aims to investigate this unusual structural behavior of complex engineering structures.With the help of a Fourier finite element program,the fixing of a space boom section is well designed so that the TIV can be successfully observed.Although the observed torsional vibration mode is different from the bending vibration mode predicted by the classic theory based on a simple beam model,it can be successfully explained by the general thermal structural interaction theory.This demonstrates the validity of the theoretical model and the necessity of using finite element program to analyze complex engineering structures.
文摘The residual stress generated in the manufacturing process of inertial platform causes the drift of inertial platform parameters in long-term storage condition.However,the existing temperature cycling experiment could not meet the increased repeatability technical requirements of inertial platform parameters.In order to solve this problem,in this paper,firstly the Unigraphics(UG) software and the interface compatibility of ANSYS software are used to establish the inertial platform finite element model.Secondly,the residual stress is loaded into finite element model by ANSYS function editor in the form of surface loads to analyze the efficiency.And then,the generation based on ANSYS simulation inertial platform to accelerate the stability of experiment profile is achieved by the application of the analysis method of orthogonal experimental design and ANSYS thermal-structural coupling.The optimum accelerated stability experiment profile is determined finally,which realizes the rapid,effective release of inertial platform residual stress.The research methodology and conclusion of this paper have great theoretical and practical significance to the production technology of inertial platform.
文摘The severe internal heat generation of the motorized spindle system causes uneven temperature dis- tribution, and will affect the vibration characteristics of the system. Based on the thermal analysis about the motorized spindle by finite element method (FEM), the thermal deformations of the spindle system are calculated by the thermal structure coupling simulation, and the thermal deformations of the rotor and the bearing units are extracted to analyze the bearing stiffness changes so that the modal characteristics of the rotor can be simulated in different thermal state conditions. And then the rotor thermal deformation experiment and the modal experiment of spindle by exciting with hammer are performed. The result shows that the thermal state of the motorized spindle system has a significant influence on the natural frequency of the rotor, which can be carefully treated when a spindle system is designed.