Since the concept of invisible cloak was proposed by Pendry and Leonhardt in 2006, many researchers have applied the theory of coordinate transformation to thermodynamics and overcome the complexity of inhomogeneous a...Since the concept of invisible cloak was proposed by Pendry and Leonhardt in 2006, many researchers have applied the theory of coordinate transformation to thermodynamics and overcome the complexity of inhomogeneous and anisotropic of material parameters. However, only two-dimensional(2 D) thermal illusion devices are researched recently. According to this situation, our study focuses on three-dimensional(3 D) thermal illusion devices including shrinker(or invisible cloak),concentrator, amplifier, reshaper, and rotator with arbitrary shape in a general way. In this paper, the corresponding material parameters of thermal illusion devices mentioned above are derived based on the theory of transformation thermodynamics and the simulated results agree well with the theoretical derivations. In addition, the conventional invisible cloak just controls the temperature gradient rather than the temperature value which is more concerned in physical applications. Here,we find that the temperature value of the cloaked object can be controlled by adjusting the location of the original point of the coordinate system.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11702069)the Fundamental Research Funds for the Central Universities,China(Grant No.HEUCFM180203)
文摘Since the concept of invisible cloak was proposed by Pendry and Leonhardt in 2006, many researchers have applied the theory of coordinate transformation to thermodynamics and overcome the complexity of inhomogeneous and anisotropic of material parameters. However, only two-dimensional(2 D) thermal illusion devices are researched recently. According to this situation, our study focuses on three-dimensional(3 D) thermal illusion devices including shrinker(or invisible cloak),concentrator, amplifier, reshaper, and rotator with arbitrary shape in a general way. In this paper, the corresponding material parameters of thermal illusion devices mentioned above are derived based on the theory of transformation thermodynamics and the simulated results agree well with the theoretical derivations. In addition, the conventional invisible cloak just controls the temperature gradient rather than the temperature value which is more concerned in physical applications. Here,we find that the temperature value of the cloaked object can be controlled by adjusting the location of the original point of the coordinate system.