期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Breaking Through Bottlenecks for Thermally Conductive Polymer Composites:A Perspective for Intrinsic Thermal Conductivity,Interfacial Thermal Resistance and Theoretics 被引量:19
1
作者 Junwei Gu Kunpeng Ruan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第7期118-126,共9页
Rapid development of energy,electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites.However,the thermal conductivity coefficient(λ)va... Rapid development of energy,electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites.However,the thermal conductivity coefficient(λ)values of prepared thermally conductive polymer composites are still difficult to achieve expectations,which has become the bottleneck in the fields of thermally conductive polymer composites.Aimed at that,based on the accumulation of the previous research works by related researchers and our research group,this paper proposes three possible directions for breaking through the bottlenecks:(1)preparing and synthesizing intrinsically thermally conductive polymers,(2)reducing the interfacial thermal resistance in thermally conductive polymer composites,and(3)establishing suitable thermal conduction models and studying inner thermal conduction mechanism to guide experimental optimization.Also,the future development trends of the three above-mentioned directions are foreseen,hoping to provide certain basis and guidance for the preparation,researches and development of thermally conductive polymers and their composites. 展开更多
关键词 thermally conductive polymer composites Intrinsic thermal conductivity Interfacial thermal resistance Thermal conduction models Thermal conduction mechanisms
下载PDF
Thermally Conductive,Healable Glass Fiber Cloth Reinforced Polymer Composite based onβ-Hydroxyester Bonds Crosslinked Epoxy with Improved Heat Resistance
2
作者 Fang Chen Xiao-Yan Pang +2 位作者 Ze-Ping Zhang Min-Zhi Rong Ming-Qiu Zhang 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第5期643-654,I0009,共13页
To simultaneously endow thermal conductivity,high glass transition temperature(Tg)and healing capability to glass fiber/epoxy(GFREP)composite,dynamic crosslinked epoxy resin bearing reversibleβ-hydroxyl ester bonds w... To simultaneously endow thermal conductivity,high glass transition temperature(Tg)and healing capability to glass fiber/epoxy(GFREP)composite,dynamic crosslinked epoxy resin bearing reversibleβ-hydroxyl ester bonds was reinforced with boron nitride nanosheets modified glass fiber cloth(GFC@BNNSs).The in-plane heat conduction paths were constructed by electrostatic self-assembly of polyacrylic acid treated GFC and polyethyleneimine decorated BNNSs.Then,the GFC@BNNSs were impregnated with the mixture of lower concentration(3-glycidyloxypropyl)trimethoxysilane grafted BN micron sheets,3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate and hexahydro-4-methylphthalic anhydride,which accounted for establishing the through-plane heat transport pathways and avoiding serious deterioration of mechanical performances.The resultant GFREP composite containing less boron nitride particles(17.6 wt%)exhibited superior in-plane(3.29 W·m^(-1)·K^(-1))and through-plane(1.16 W·m^(-1)·K^(-1))thermal conductivities,as well as high Tg of 204℃(Tg of the unfilled epoxy=177℃).The reversible transesterification reaction enabled closure of interlaminar cracks within the composite,achieving decent healing efficiencies estimated by means of tensile strength(71.2%),electrical breakdown strength(83.6%)and thermal conductivity(69.1%).The present work overcame the disadvantages of conventional thermally conductive composites,and provided an efficient approach to prolong the life span of thermally conductive GFREP laminate for high-temperature resistant integrated circuit application. 展开更多
关键词 thermally conductive composites Boron nitride High-temperature resistance β-Hydroxyl ester bond HEALING
原文传递
Microstructure and Thermal Properties of SiCp/Cu Composites with Mo Coating on SiC Particles
3
作者 刘猛 白淑心 +2 位作者 LI Shun ZHAO Xun XIONG Degan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期1013-1018,共6页
SiCp/Cu composites with a compact microstructure were successfully fabricated by vacuum hot-pressing method. In order to suppress the detrimental interfacial reactions and ameliorate the interfacial bonding between co... SiCp/Cu composites with a compact microstructure were successfully fabricated by vacuum hot-pressing method. In order to suppress the detrimental interfacial reactions and ameliorate the interfacial bonding between copper and silicon carbide, molybdenum coating was deposited on the surface of silicon carbide by magnetron sputtering method and crystallized heat-treatment. The effects of the interfacial design on the thermo-physical properties of Si Cp/Cu composites were studied in detail. Thermal conductivity and expansion test results showed that silicon carbide particles coated with uniform and compact molybdenum coating have improved the comprehensive thermal properties of the Si Cp/Cu composites. Furthermore, the adhesion of the interface between silicon carbide and copper was significantly strengthened after molybdenum coating. Si Cp/Cu composites with a maximum thermal conductivity of 274.056 W/(m·K) and a coefficient of thermal expansion of 9 ppm/K were successfully prepared when the volume of silicon carbide was about 50%, and these Si Cp/Cu composites have potential applications for the electronic packageing of the high integration electronic devices. 展开更多
关键词 SiCp/Cu composites hot-pressing magnetron sputtering molybdenum coating thermal conductivity
下载PDF
Thermally Conductive and Insulating Epoxy Composites by Synchronously Incorporating Si-sol Functionalized Glass Fibers and Boron Nitride Fillers 被引量:7
4
作者 Rui-Han Zhang Xue-Tao Shi +4 位作者 Lin Tang Zheng Liu Jun-Liang Zhang Yong-Qiang Guo Jun-Wei Gu 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2020年第7期730-739,I0006,共11页
Glass fibers(GFs)/epoxy laminated composites always present weak interlaminar shear strength(ILSS)and low cross-plane thermal conductivity coefficient(λ⊥).In this work,silica-sol,synthesized from tetraethyl orthosil... Glass fibers(GFs)/epoxy laminated composites always present weak interlaminar shear strength(ILSS)and low cross-plane thermal conductivity coefficient(λ⊥).In this work,silica-sol,synthesized from tetraethyl orthosilicate(TEOS)and KH-560 via sol-gel method,was employed to functionalize the surface of GFs(Si-GFs).Together with a spherical boron nitride(BNN-30),the thermally conductive BNN-30/Si-GFs/epoxy laminated composites were then fabricated.Results demonstrate that Si-sol is beneficial to the improvement of mechanical properties for epoxy laminated composites(especially for ILSS).The BNN-30/Si-GFs/epoxy laminated composites with 15 wt%BNN-30 fillers display the optimal comprehensive properties.In-planeλ(λ//)andλ⊥reach the maximum of 2.37 and 1.07 W.m-1.K-1,146.9%and 132.6%higher than those of SiGFs/epoxy laminated composites(λ//=0.96 W.m-1.K-1 andλ⊥=0.46 W.m-1K-1),respectively,and also about 10.8 and 4.9 times those of pure epoxy resin(λ//=λ⊥,0.22 W.m-1.K-1).And the heat-resistance index(THRI),dielectric constant(ε),dielectric loss(tanδ),breakdown strength(E0),surface resistivity(ρs)as well as volume resistivity(ρv)are 197.3℃,4.95,0.0046,22.3 kV.mm-1,1.8×1014Ω,and 2.1×1014Ω.cm,respectively. 展开更多
关键词 thermally conductive composites Glass fibers Epoxy resin Silica-sol Surface functionalization
原文传递
Tetris-Style Stacking Process to Tailor the Orientation of Carbon Fiber Scaffolds for Efficient Heat Dissipation
5
作者 Shida Han Yuan Ji +4 位作者 Qi Zhang Hong Wu Shaoyun Guo Jianhui Qiu Fengshun Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期310-324,共15页
As the miniaturization of electronic devices and complication of electronic packaging,there are growing demands for thermal interfacial materials with enhanced thermal conductivity and the capability to direct the hea... As the miniaturization of electronic devices and complication of electronic packaging,there are growing demands for thermal interfacial materials with enhanced thermal conductivity and the capability to direct the heat toward heat sink for highly efficient heat dissipation.Pitch-based carbon fiber(CF)with ultrahigh axial thermal conductivity and aspect ratios exhibits great potential for developing thermally conductive composites as TIMs.However,it is still hard to fabricate composites with aligned carbon fiber in a general approach to fully utilize its excellent axial thermal conductivity in specific direction.Here,three types of CF scaffolds with different oriented structure were developed via magnetic field-assisted Tetris-style stacking and carbonization process.By regulating the magnetic field direction and initial stacking density,the self-supporting CF scaffolds with horizontally aligned(HCS),diagonally aligned and vertically aligned(VCS)fibers were constructed.After embedding the polydimethylsiloxane(PDMS),the three composites exhibited unique heat transfer properties,and the HCS/PDMS and VCS/PDMS composites presented a high thermal conductivity of 42.18 and 45.01 W m^(−1)K^(−1)in fiber alignment direction,respectively,which were about 209 and 224 times higher than that of PDMS.The excellent thermal conductivity is mainly ascribed that the oriented CF scaffolds construct effective phonon transport pathway in the matrix.In addition,fishbone-shaped CF scaffold was also produced by multiple stacking and carbonization process,and the prepared composites exhibited a controlled heat transfer path,which can allow more versatility in the design of thermal management system. 展开更多
关键词 Carbon fiber Magnetic field Thermal management thermally conductive composites
下载PDF
Avoiding heating interference and guided thermal conduction in stretchable devices using thermal conductive composite islands 被引量:4
6
作者 Seung Ji Kang Haeleen Hong +6 位作者 Chanho Jeong Ju Seung Lee Hyewon Ryu Jae-hun Yang Jong Uk Kim Yiel Jae Shin Tae-il Kim 《Nano Research》 SCIE EI CSCD 2021年第9期3253-3259,共7页
The miniaturization and high integration of devices demand significant thermal management materials.Current technologies for the thermal management of electronics show some limitations in the case of multiple chip arr... The miniaturization and high integration of devices demand significant thermal management materials.Current technologies for the thermal management of electronics show some limitations in the case of multiple chip arrays.A device in multiple chip array is affected by heat from adjacent devices,along with thermal conductive composite.To address this problem,we present a nano composite of aligned boron nitride(BN)nanosheet islands with porous polydimethylsiloxane(PDMS)foam to have mechanical stability and non-thermal interference.The islands of tetrahedrally-structured BN in the composite have a high thermal conductivity of 1.219 W·m^(-1)·K^(-1) in the through-plane direction(11.234W·m^(-1)·K^(-1)in the in-plane direction)with 16 wt.%loading of BN.On the other hand,porous PDMS foam has a low thermal conductivity of 0.0328W·m^(-1)·K^(-1) in the through-plane direction at 70%porosity.Heat pathways are then formed only in the structured BN islands of the composite.The porous PDMS foam can be applied as a thermal barrier between structured BN islands to inhibit thermal interference in multiple device arrays.Furthermore,this composite can maintain selective thermal dissipation performance with 70%tensile strain.Another beauty of the work is that it could have guided heat dissipation by assembling of multiple layers which have high vertical thermal conductive islands,while inhibiting thermal interference.The selective heat dissipating composite can be applied as a heatsink for multiple chip arrays electronics. 展开更多
关键词 selective thermal conduction non-thermal interference thermal conductive composite island stretchable electronics structured boron nitride nanosheet(s-BN) porous polydimethylsiloxane(p-PDMS)
原文传递
Effects of Al particles and thin layer on thermal expansion and conductivity of Al-Y_2Mo_3O_(12) cermets 被引量:1
7
作者 刘献省 葛向红 +1 位作者 梁二军 张伟风 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第11期498-502,共5页
Low thermal expansion composites are difficult to obtain by using Al with larger positive thermal expansion coefficient(TEC) and the materials with smaller negative TECs. In this investigation, Y2Mo3O12 with larger ... Low thermal expansion composites are difficult to obtain by using Al with larger positive thermal expansion coefficient(TEC) and the materials with smaller negative TECs. In this investigation, Y2Mo3O12 with larger negative TEC is used to combine with Al to obtain a low thermal expansion composite with high conductivity. The TEC of Al is reduced by 19%for a ratio Al:Y2Mo3O12 of 0.3118. When the mass ratio of Al:Y2Mo3O12 increases to 2.0000, the conductivity of the composite increases so much that a transformation from capacitance to pure resistance appears. The results suggest that Y2Mo3O12 plays a dominant role in the composite for low content of Al(presenting isolate particles), while the content of Al increases enough to contact each other, the composite presents mainly the property of Al. For the effect of high content Al, it is considered that Al is squeezed out of the cermets during the uniaxial pressure process to form a thin layer on the surface. 展开更多
关键词 negative thermal expansion low thermal expansion conductivity composite
下载PDF
Thermal transports in the MXenes family:Opportunities and challenges
8
作者 Yurui Liu Yue Wu Xinwei Wang 《Nano Research》 SCIE EI CSCD 2024年第8期7700-7716,共17页
The carbides and nitrides of transition metals known as“MXenes”refer to a fast-growing family of two-dimensional materials discovered in 2011.Thanks to their unique nanolayer structure,superior electrical,mechanical... The carbides and nitrides of transition metals known as“MXenes”refer to a fast-growing family of two-dimensional materials discovered in 2011.Thanks to their unique nanolayer structure,superior electrical,mechanical,and thermal properties,MXenes have shown great potential in addressing the critical overheating issues that jeopardize the performance,stability,and lifetime of high-energy-density components in modern devices such as microprocessors,integrated circuits,and capacitors,etc.The outstanding intrinsic thermal conductivity of MXenes has been proved by experimental and theoretical research.Numerous MXenes-enabled high thermal conductivity composites incorporated with polymer matrix have also been reported and widely used as thermal management materials.Considering the booming heat dissipation demands,MXenes-enabled thermal management material is an extremely valuable and scalable option for modern electronics industries.However,the fundamental thermal transport mechanisms behind the MXenes family remain unclear.The MXene thermal conductivity disparities between the theoretical prediction and experimental results are still significant.To better understand the thermal conduction in MXenes and provide more insights for engineering high-performance MXene thermal management materials,in this article,we summarize recent progress on thermal conductive MXenes.The essential factors that affect MXenes intrinsic thermal conductivities are tackled,selected MXenes-polymer composites are highlighted,and prospects and challenges are also discussed. 展开更多
关键词 transition metal carbide(MXene) thermal transport two-dimensional materials thermally conductive composites
原文传递
Janus(BNNS/ANF)-(AgNWs/ANF)thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances 被引量:28
9
作者 Yixin Han Kunpeng Ruan Junwei Gu 《Nano Research》 SCIE EI CSCD 2022年第5期4747-4755,共9页
Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry,artificial i... Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry,artificial intelligence and wearable electronics.In this work,silver nanowires(AgNWs)are prepared using silver nitrate as the silver source and ethylene glycol as the solvent and reducing agent,and boron nitride(BN)is performed to prepare BN nanosheets(BNNS)with the help of isopropyl alcohol and ultrasonication-assisted peeling method,which are compounded with aramid nanofibers(ANF)prepared by chemical dissociation,respectively,and the(BNNS/ANF)-(AgNWs/ANF)thermal conductivity and electromagnetic interference shielding composite films with Janus structures are prepared by the"vacuum-assisted filtration and hot-pressing"method.Janus(BNNS/ANF)-(AgNWs/ANF)composite films exhibit"one side insulating,one side conducting"performance,the surface resistivity of the BNNS/ANF surface is 4.7×10^(13) Ω,while the conductivity of the AgNWs/ANF surface is 5,275 S/cm.And Janus(BNNS/ANF)-(AgNWs/ANF)composite film with thickness of 95 pm has a high in-plane thermal conductivity coefficient of 8.12 W/(m·K)and superior electromagnetic interference shielding effectiveness of 70 dB.The obtained composite film also has excellent tensile strength of 122.9 MPa and tensile modulus and 2.7 GPa.It also has good temperature-voltage response characteristics(high Joule heating temperature at low supply voltage(5 V,215.0℃),fast response time(10 s)),excellent electrical stability and reliability(stable and constant real-time relative resistance under up to 300 cycles and 1,500 s of tensile-bending fatigue work tests). 展开更多
关键词 thermal conductivity composite film Janus structure aramid nanofibers electromagnetic interference shielding performance Joule heating
原文传递
Carbonate-salt-based composite materials for medium- and high-temperature thermal energy storage 被引量:20
10
作者 Zhiwei Ge Feng Ye +3 位作者 Hui Cao Guanghui Leng Yue Qin Yulong Ding 《Particuology》 SCIE EI CAS CSCD 2014年第4期77-81,共5页
This paper discusses composite materials based on inorganic salts for medium- and high-temperature thermal energy storage application. The composites consist of a phase change material (PCM), a ceramic material, and... This paper discusses composite materials based on inorganic salts for medium- and high-temperature thermal energy storage application. The composites consist of a phase change material (PCM), a ceramic material, and a high thermal conductivity material. The ceramic material forms a microstructural skeleton for encapsulation of the PCM and structural stability of the composites; the high thermal conductivity material enhances the overall thermal conductivity of the composites. Using a eutectic salt of lithium and sodium carbonates as the PCM, magnesium oxide as the ceramic skeleton, and either graphite flakes or carbon nanotubes as the thermal conductivity enhancer, we produced composites with good physical and chemical stability and high thermal conductivity. We found that the wettability of the molten salt on the ceramic and carbon materials significantly affects the microstructure of the composites. 展开更多
关键词 Thermal energy storage composite materials Microstructure Thermal conductivity Phase change material
原文传递
Thermal properties of diamond/Al composites by pressure infiltration:comparison between methods of coating Ti onto diamond surfaces and adding Si into Al matrix 被引量:4
11
作者 Cai-Yu Guo Xin-Bo He +1 位作者 Shu-Bin Ren Xuan-Hui Qu 《Rare Metals》 SCIE EI CAS CSCD 2016年第3期249-255,共7页
This study was pertained to the effects of Ti coating on diamond surfaces and Si addition into Al matrix on the thermal conductivity(TC) and the coefficient of thermal expansion(CTE) of diamond/Al composites by pr... This study was pertained to the effects of Ti coating on diamond surfaces and Si addition into Al matrix on the thermal conductivity(TC) and the coefficient of thermal expansion(CTE) of diamond/Al composites by pressure infiltration.The fracture surfaces,interface microstructures by metal electro-etching and interfacial thermal conductance of the composites prepared by two methods were compared.The results reveal that Ti coating on diamond surfaces and only12.2 wt% Si addition into Al matrix could both improve the interfacial bonding and increase the TCs of the composites.But the Ti coating layer introduces more interfacial thermal barrier at the diamond/Al interface compared to adding 12.2 wt% Si into Al matrix.The diamond/Al composite with 12.2 wt% Si addition exhibits maximum TC of 534 W·m^-1·K^-1and a very low CTE of 8.9×10^-6K^-1,while the coating Ti-diamond/Al composite has a TC of 514 W·m^-1·K^-1 and a CTE of 11.0×10^-6K^-1. 展开更多
关键词 Metal matrix composites Coating Thermal conductivity Coefficient of thermal expansion Pressure infiltration
原文传递
Influence of cryogenic thermal cycling treatment on the thermophysical properties of carbon/carbon composites between room temperature and 1900℃ 被引量:1
12
作者 Mao-yan Zhang Ke-zhi Li +3 位作者 Xiao-hong Shi Ling-jun Guo Lei Feng Tao Duan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第2期409-415,共7页
Influence of cryogenic thermal cycling treatment (from -120 ℃ to 120 ℃ at 1.3 × 10^-3 Pa) on the thermo- physical properties including thermal conductivity (TC), thermal diffusivity (TD), specific heat ... Influence of cryogenic thermal cycling treatment (from -120 ℃ to 120 ℃ at 1.3 × 10^-3 Pa) on the thermo- physical properties including thermal conductivity (TC), thermal diffusivity (TD), specific heat (SH) and coefficient of thermal expansion (CTE) ranging from room temperature to 1900 ℃ of carbon/carbon (C/C) composites in x-y and z directions were studied. Test results showed that fiber/matrix interracial debonding, fiber pull-out and microcracks occurred after the cryogenic thermal treatment and they increased significantly with the cycle number increasing, while cycled more than 30 times, the space ofmicrodefects reduced obviously due to the accumulation of cyclic thermal stress. TC, TD, SH and CTE of the cryogenic thermal cycling treated C/C composites were first decreased and then increased in both directions (x-y and z directions) with the increase of thermal cycles. A model regarding the heat conduction in cryogenic thermal cycling treated C/C composites was proposed. 展开更多
关键词 Carbon/carbon composites Cryogenic thermal cycling Thermal conductivity Thermal expansion
原文传递
3D打印调控铜线/聚乳酸复合材料的导热通路长度和数量 被引量:4
13
作者 马腾博 阮坤鹏 +2 位作者 郭永强 韩懿鑫 顾军渭 《Science China Materials》 SCIE EI CAS CSCD 2023年第10期4012-4021,共10页
导热通路对理解导热高分子复合材料的导热行为至关重要,但目前有关导热通路属性(长度、数量)对高分子复合材料导热系数的影响机制缺乏深入研究.本文采用3D打印技术制备了铜线(Cw)导热通路长度和数量可控的一维铜线/聚乳酸(1D-Cw/PLA)导... 导热通路对理解导热高分子复合材料的导热行为至关重要,但目前有关导热通路属性(长度、数量)对高分子复合材料导热系数的影响机制缺乏深入研究.本文采用3D打印技术制备了铜线(Cw)导热通路长度和数量可控的一维铜线/聚乳酸(1D-Cw/PLA)导热复合材料,建立了针对一维导热通路的高分子复合材料的导热模型,明晰了其导热通路属性与其导热性能的定量关系.相同Cw用量下,1D-Cw/PLA导热复合材料的面内导热系数与导热通路的数量和长度呈正相关.采用本文构建的导热模型和经验方程对1D-Cw/PLA复合材料的导热系数进行预测,95%的置信度表明预测值与实测值无显著差异. 展开更多
关键词 3D printing thermally conductive composites thermal conduction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部