期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Analysis of influence of heat exchangerfouling on heat transfer performancebased on thermal fluid coupling 被引量:1
1
作者 HUANG Si MURAD Tariq +2 位作者 NIU Qifeng LIN Guangtang CHEN Jianxun 《排灌机械工程学报》 CSCD 北大核心 2023年第7期695-700,共6页
A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid do... A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid domains under three different fouling conditions: fouling inside the tube, fouling outside the tube, and fouling inside the shell. The flow field, temperature, and pressure distributions in the heat exchanger were solved numerically to analyze the heat transfer performance parameters, such as thermal resistance. It is found that the pressure drop of the heat exchanger and the thermal resistance of the tube wall increase by nearly 30% and 20%, respectively, when the relative fouling thickness reaches 10%. The fouling inside the tube has more impact on the heat transfer performance of the heat exchanger, and the fouling inside the shell has less impact. 展开更多
关键词 shell-tube heat exchanger thermal fluid coupling fouling thermal resistance heat transfer analysis
下载PDF
Anisotropic strength,deformation and failure of gneiss granite under high stress and temperature coupled true triaxial compression
2
作者 Hongyuan Zhou Zaobao Liu +2 位作者 Fengjiao Liu Jianfu Shao Guoliang Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期860-876,共17页
The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted ... The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted to studying the anisotropic strength,deformation and failure behavior of gneiss granite from the deep boreholes of a railway tunnel that suffers from high tectonic stress and ground temperature in the eastern tectonic knot in the Tibet Plateau.High-temperature true triaxial compression tests are performed on the samples using a self-developed testing device with five different loading directions and three temperature values that are representative of the geological conditions of the deep underground tunnels in the region.Effect of temperature and loading direction on the strength,elastic modulus,Poisson’s ratio,and failure mode are analyzed.The method for quantitative identification of anisotropic failure is also proposed.The anisotropic mechanical behaviors of the gneiss granite are very sensitive to the changes in loading direction and temperature under true triaxial compression,and the high temperature seems to weaken the inherent anisotropy and stress-induced deformation anisotropy.The strength and deformation show obvious thermal degradation at 200℃due to the weakening of friction between failure surfaces and the transition of the failure pattern in rock grains.In the range of 25℃ 200℃,the failure is mainly governed by the loading direction due to the inherent anisotropy.This study is helpful to the in-depth understanding of the thermal-mechanical behavior of anisotropic rocks in deep underground projects. 展开更多
关键词 Anisotropic strength and deformation True triaxial compression Thermal mechanical coupling Deep rock mechanics High temperature rock mechanics
下载PDF
Core and blanket thermal-hydraulic analysis of a molten salt fast reactor based on coupling of OpenMC and OpenFOAM 被引量:8
3
作者 Bin Deng Yong Cui +5 位作者 Jin-Gen Chen Long He Shao-Peng Xia Cheng-Gang Yu Fan Zhu Xiang-Zhou Cai 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第9期1-15,共15页
In the core of a molten salt fast reactor(MSFR),heavy metal fuel and fission products can be dissolved in a molten fluoride salt to form a eutectic mixture that acts as both fuel and coolant.Fission energy is released... In the core of a molten salt fast reactor(MSFR),heavy metal fuel and fission products can be dissolved in a molten fluoride salt to form a eutectic mixture that acts as both fuel and coolant.Fission energy is released from the fuel salt and transferred to the second loop by fuel salt circulation.Therefore,the MSFR is characterized by strong interaction between the neutronics and the thermal hydraulics.Moreover,recirculation flow occurs,and nuclear heat is accumulated near the fertile blanket,which significantly affects both the flow and the temperature fields in the core.In this work,to further optimize the conceptual geometric design of the MSFR,three geometries of the core and fertile blanket are proposed,and the thermal-hydraulic characteristics,including the three-dimensional flow and temperature fields of the fuel and fertile salts,are simulated and analyzed using a coupling scheme between the open source codes OpenMC and OpenFOAM.The numerical results indicate that a flatter core temperature distribution can be obtained and the hot spot and flow stagnation zones that appear in the upper and lower parts of the core center near the reflector can be eliminated by curving both the top and bottom walls of the core.Moreover,eight cooling loops with a total flow rate of0.0555 m3 s-1 ensur an acceptable temperature distribusure an acceptable temperature distribution in the fertile blanket. 展开更多
关键词 Molten salt fast reactor Core and blanket thermal-hydraulic analysis Neutronics and thermal hydraulics coupling
下载PDF
Seepage-heat transfer coupling process of low temperature return water injected into geothermal reservoir in carbonate rocks in Xian County,China 被引量:2
4
作者 WANG Yan LIU Yan-guang +3 位作者 BIAN Kai ZHANG Hong-liang QIN Shen-jun WANG Xiao-jun 《Journal of Groundwater Science and Engineering》 2020年第4期305-314,共10页
Fracture seepage and heat transfer in the geothermal reservoir of carbonate rocks after the reinjection of low temperature geothermal return water is a complex coupling process,which is also the frontier of geothermal... Fracture seepage and heat transfer in the geothermal reservoir of carbonate rocks after the reinjection of low temperature geothermal return water is a complex coupling process,which is also the frontier of geothermal production and reinjection research.Based on the research of cascade comprehensive development of geothermal resources in Beijing-Tianjin-Hebei(Xian County),the carbonate geothermal reservoir of Wumishan formation in the geothermal field in Xian County is investigated.With the development of the discrete fracture network model and the coupling model of seepage and heat transfer,the numerical solution of seepage field and temperature field with known fracture network is reached using the finite element software COMSOL,and the coupling process of seepage flow and heat in carbonate rocks is revealed.The results show that the distribution of temperature field of fractured rocks in geothermal reservoir of carbonate rocks has strong non-uniformity and anisotropy.The fracture network is interpenetrated,which constitutes the dominant channel of water conduction,and along which the fissure water moves rapidly.Under the influence of convective heat transfer and conductive heat transfer,one of the main factors to be considered in the study of thermal breakthrough is to make the cold front move forward rapidly.When the reinjection and production process continues for a long time and the temperature of the geothermal reservoir on the pumping side drops to a low level,the temperature of bedrocks is still relatively high and continues to supply heat to the fissure water,so that the temperature of the thermal reservoir on the pumping side will not decrease rapidly to the water temperature at the inlet of reinjection,but will gradually decrease after a long period of time,showing an obvious long tail effect.The distribution of fractures will affect the process of seepage and heat transfer in carbonate reservoirs,which should be considered in the study of fluid thermal coupling in carbonate reservoirs. 展开更多
关键词 Carbonate reservoir Geothermal reinjection Fractured rock mass Fluid thermal coupling
下载PDF
Thermal-Fluid-Structure Coupling Analysis of Flexible Corrugated Cryogenic Hose 被引量:1
5
作者 YANG Liang LIU Miao-er +6 位作者 LIU Yun LI Fang-qiu FAN Jia-kun LIU Fu-peng LU Zhao-kuan YANG Jian-ye YAN Jun 《China Ocean Engineering》 SCIE EI CSCD 2022年第4期658-665,共8页
This work presents a numerical investigation of the thermal–fluid–structure coupling behavior of the liquid natural gas(LNG)transported in the flexible corrugated cryogenic hose.A three-dimensional model of the corr... This work presents a numerical investigation of the thermal–fluid–structure coupling behavior of the liquid natural gas(LNG)transported in the flexible corrugated cryogenic hose.A three-dimensional model of the corrugated hose structure composed of multiple layers of different materials is established and coupled with turbulent LNG flow and heat transfer models in the commercial software ANSYS Workbench.The flow transport behavior,heat transfer across the hose layers,and structural response caused by the flow are analyzed.Parametric studies are performed to evaluate the impacts of inlet flow rate and thermal conductivity of insulation material on the temperature and structural stress of the corrugated hose.The study found that,compared with a regular operating condition,higher inlet flow velocities not only suppress the heat gain of the LNG but also lower the flow-induced structural stress.The insulation layer exhibits excellent performance in maintaining the temperature at the fluid–structure interface,showing little temperature change with respect to material thermal conductivity and ambient temperature.The simulation results may contribute to the research and design of the flexible corrugated cryogenic hoses and provide guidance for safer and more efficient field operations. 展开更多
关键词 flexible corrugated cryogenic hose LNG computational fluid dynamics thermal–fluid–structure coupling
下载PDF
Analytical modelling of end thermal coupling in a solid-state laser longitudinally bonded by a vertical-cavity top-emitting laser diode
6
作者 吴坚 H.D.Summers 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第11期4912-4918,共7页
The intrinsic features involving a circularly symmetric beam profile with low divergence, planar geometry as well as the increasingly enhanced power of vertical-cavity surface-emitting lasers (VCSELs) have made the ... The intrinsic features involving a circularly symmetric beam profile with low divergence, planar geometry as well as the increasingly enhanced power of vertical-cavity surface-emitting lasers (VCSELs) have made the VCSEL a promising pump source in direct end bonding to a solid-state laser medium to form the minimized, on-wafer integrated laser system. This scheme will generate a surface contact pump configuration and thus additional end thermal coupling to the laser medium through the joint interface of both materials, apart from pump beam heating. This paper analytically models temperature distributions in both VCSEL and the laser medium from the end thermal coupling regarding surface contact pump configuration using a top-emitting VCSEL as the pump source for the first time. The analytical solutions are derived by introducing relative temperature and mean temperature expressions. The results show that the end contact heating by the VCSEL could lead to considerable temperature variations associated with thermal phase shift and thermal lensing in the laser medium. However, if the central temperature of the interface is increased by less than 20 K, the end contact heating does not have a significant thermal influence on the laser medium. In this case, the thermal effect should be dominated by pump beam heating. This work provides useful analytical results for further analysis of hybrid thermal effects on those lasers pumped by a direct VCSEL bond. 展开更多
关键词 solid-state laser end pump thermal coupling vertical-cavity surface-emitting laser
下载PDF
Thermally Induced Vibration Analysis of Flexible Beams Based on Isogeometric Analysis
7
作者 Jianchen Wu Yujie Guo Fangli Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第9期1007-1031,共25页
Spacecraft flexible appendages may experience thermally induced vibrations(TIV)under sudden heating loads,which in consequence will be unable to complete their intended missions.Isogeometric analysis(IGA)utilizes,in a... Spacecraft flexible appendages may experience thermally induced vibrations(TIV)under sudden heating loads,which in consequence will be unable to complete their intended missions.Isogeometric analysis(IGA)utilizes,in an isoparametric concept,the same high order and high continuity non-uniform rational B-splines(NURBS)to represent both the geometry and the physical field of the structure.Compared to the traditional Lagrange polynomial based finite element method where only C0-continuity across elements can be achieved,IGA is geometrically exact and naturally fulfills the C1-continuity requirement of Euler–Bernoulli(EB)beam elements,therefore,does not need extra rotational degrees-of-freedom.In this paper,we present a thermally induced vibration analysis framework based on the isogeometric method where thermal and structural behaviors are coupled.We fully exploited the higher order,higher continuous and geometric exactness of the NURBS basis with both benchmarks and sophisticated problems.In particular,we studied the thermally induced vibrations of the Hubble Space Telescope(HST)solar panel where main factors influencing thermal flutters are studied,and where possible improvements of the analytical reference methods are discussed.Additionally,thermally induced vibrations of the thin-walled lenticular tubes are studied and two new configurations of the tube are proposed to effectively suppress the thermally induced vibrations.Numerical examples of both benchmarks and sophisticated problems confirm the accuracy and efficiency of the isogeometric analysis framework for thermally induced vibration analysis of space structures. 展开更多
关键词 thermally induced vibration thermal flutter radiation heat transfer isogeometric analysis thermal structural coupling
下载PDF
Numerical modeling of influence of thermal flow coupling on flow characteristics of molten steel
8
作者 Fan Junfei Ren Sanbing +3 位作者 Chen Yaxian Zhao Shunli Huang Zongze Zhu Miaoyong 《Baosteel Technical Research》 CAS 2008年第1期51-55,共5页
Using the equation of continuity and the double equation of Navier-Stokes and k-ε, numerical modeling on a single outlet continuous casting tundish has been carried out during the process of non-thermal flow coupling... Using the equation of continuity and the double equation of Navier-Stokes and k-ε, numerical modeling on a single outlet continuous casting tundish has been carried out during the process of non-thermal flow coupling. The flow field distribution inside the tundish was calculated and the viscosity response time was calculated with the mass transfer equation based on the flow field distribution. The flow characteristics of the molten steel inside the tundish were analyzed, with the results of the numerical modeling compared to the hydraulic modeling. The results showed that the Resident Time Distribution (RTD) curves in the latter anatomosed comparatively better. This certified the validity established by the mathematical model. Numerical modeling was carried out on both large and small tundishes during the processes of thermal flow coupling and also thermal non-flow coupling. The results showed that in regards to large tundishes with relatively simple flow processes, using numerical modeling for thermal flow coupling is necessary. 展开更多
关键词 TUNDISH liquid flow thermal flow coupling numerical modeling
下载PDF
Geometric nonlinear formulation for thermal-rigid-flexible coupling system
9
作者 Wei Fan Jin-Yang Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第5期728-737,共10页
This paper develops geometric nonlinear hybrid formulation for flexible multibody system with large deformation considering thermal effect. Different from the conventional formulation, the heat flux is the function of... This paper develops geometric nonlinear hybrid formulation for flexible multibody system with large deformation considering thermal effect. Different from the conventional formulation, the heat flux is the function of the rotational angle and the elastic deformation, therefore, the coupling among the temperature, the large overall motion and the elastic deformation should be taken into account. Firstly, based on nonlinear strain-displacement relationship, varia- tional dynamic equations and heat conduction equations for a flexible beam are derived by using virtual work approach, and then, Lagrange dynamics equations and heat conduction equations of the first kind of the flexible multibody system are obtained by leading into the vectors of Lagrange multiplier associated with kinematic and temperature constraint equations. This formulation is used to simulate the thermal included hub-beam system. Comparison of the response be- tween the coupled system and the uncoupled system has re- vealed the thermal chattering phenomenon. Then, the key parameters for stability, including the moment of inertia of the central body, the incident angle, the damping ratio and the response time ratio, are analyzed. This formulation is also used to simulate a three-link system applied with heat flux. Comparison of the results obtained by the proposed formulation with those obtained by the approximate nonlinear model and the linear model shows the significance of con- sidering all the nonlinear terms in the strain in case of large deformation. At last, applicability of the approximate non- linear model and the linear model are clarified in detail. 展开更多
关键词 Thermal-rigid-flexible coupling - Thermal chattering Large deformation Stability analysis
下载PDF
Electromagnetic–thermal–structural coupling analysis of the ITER edge localized mode coil with flexible supports
10
作者 张善文 宋云涛 +3 位作者 汤淋淋 王忠伟 戢翔 杜双松 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第5期91-96,共6页
In a fusion reactor, the edge localized mode(ELM) coil has a mitigating effect on the ELMs of the plasma. The coil is placed close to the plasma between the vacuum vessel and the blanket to reduce its design power a... In a fusion reactor, the edge localized mode(ELM) coil has a mitigating effect on the ELMs of the plasma. The coil is placed close to the plasma between the vacuum vessel and the blanket to reduce its design power and improve its mitigating ability. The coil works in a high-temperature,high-nuclear-heat and high-magnetic-field environment. Due to the existence of outer superconducting coils, the coil is subjected to an alternating electromagnetic force induced by its own alternating current and the outer magnetic field. The design goal for the ELM coil is to maintain its structural integrity in the multi-physical field. Taking as an example the middle ELM coil(with flexible supports) of ITER(the International Thermonuclear Fusion Reactor), an electromagnetic–thermal–structural coupling analysis is carried out using ANSYS. The results show that the flexible supports help the three-layer casing meet the static and fatigue design requirements. The structural design of the middle ELM coil is reasonable and feasible. The work described in this paper provides the theoretical basis and method for ELM coil design. 展开更多
关键词 fusion reactor ELM coil electromagnetic–thermal–structural coupling analysis flexible support
下载PDF
Peridynamic modeling and simulation of thermo-mechanical de-icing process with modified ice failure criterion 被引量:5
11
作者 Ying Song Shaofan Li Shuai Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期15-35,共21页
De-icing technology has become an increasingly important subject in numerous applications in recent years.However,the direct numerical modeling and simulation the physical process of thermomechanical deicing is limite... De-icing technology has become an increasingly important subject in numerous applications in recent years.However,the direct numerical modeling and simulation the physical process of thermomechanical deicing is limited.This work is focusing on developing a numerical model and tool to direct simulate the de-icing process in the framework of the coupled thermo-mechanical peridynamics theory.Here,we adopted the fully coupled thermo-mechanical bond-based peridynamics(TM-BB-PD)method for modeling and simulation of de-icing.Within the framework of TM-BB-PD,the ice constitutive model is established by considering the influence of the temperature difference between two material points,and a modified failure criteria is proposed,which takes into account temperature effect to predict the damage of quasi-brittle ice material.Moreover,thermal boundary condition is used to simulate the thermal load in the de-icing process.By comparing with the experimental results and the previous reported finite element modeling,our numerical model shows good agreement with the previous predictions.Based on the numerical results,we find that the developed method can not only predict crack initiation and propagation in the ice,but also predict the temperature distribution and heat conduction during the de-icing process.Furthermore,the influence of the temperature for the ice crack growth pattern is discussed accordingly.In conclusion,the coupled thermal-mechanical peridynamics formulation with modified failure criterion is capable of providing a modeling tool for engineering applications of de-icing technology. 展开更多
关键词 Crack growth DE-ICING PERIDYNAMICS Failure criteria Temperature effect Thermal mechanical coupling
下载PDF
Novel design of lubricant-type vacuum distillation process for lube base oils production from hydrocracking tail oil 被引量:1
12
作者 Hui Pan Xinshuang Li +7 位作者 Yichao Shen Xiang Wu Feng Ju Yuzhe Li Gaosheng Wu Bo Ai Baoyun Xu Hao Ling 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第5期121-132,共12页
Dividing-wall columns(DWCs)are widely used in the separation of ternary mixtures,but rarely seen in the separation of petroleum fractions.This work develops two novel and energy-efficient designs of lubricant-type vac... Dividing-wall columns(DWCs)are widely used in the separation of ternary mixtures,but rarely seen in the separation of petroleum fractions.This work develops two novel and energy-efficient designs of lubricant-type vacuum distillation process(LVDP)for the separation of hydroisomerization fractions(HIF)of a hydrocracking tail oil(HTO).First,the HTO hydroisomerization reaction is investigated in an experimental fixed-bed reactor to achieve the optimum liquid HIF by analyzing the impact of the operating conditions.A LVDP used for HIF separation is proposed and optimized.Subsequently,two thermal coupling intensified technologies,including side-stream(SC)and dividing-wall column(DWC),are combined with the LVDP to develop side-stream vacuum distillation process(SC-LVDP)and dividing-wall column vacuum distillation process(DWC-LVDP).The performance of LVDP,SC-LVDP,and DWC-LVDP are evaluated in terms of energy consumption,capital cost,total annual cost,product yields,and stripping steam consumption.The results demonstrates that the intensified processes,SC-LVDP and DWC-LVDP significantly decreases the energy consumption and capital cost compared with LVDP.DWC-LVDP further decreases in capital cost due to the removal of the side stripper and narrows the overlap between the third lube oils and fourth lube oils.This study attempts to combine DWC structure into the separation of petroleum fractions,and the proposed approach and the results presented provide an incentive for the industrial implementation of high-quality utilization of HTO through intensified LVDP. 展开更多
关键词 Hydrocracking tail oil Lubricant-type vacuum distillation process Thermal coupling intensified technology Dividing-wall column
下载PDF
Thermal stability improvement of a multiple finger power SiGe heterojunction bipolar transistor under different power dissipations using non-uniform finger spacing 被引量:1
13
作者 陈亮 张万荣 +6 位作者 金冬月 沈珮 谢红云 丁春宝 肖盈 孙博韬 王任卿 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第1期667-671,共5页
A method of non-uniform finger spacing is proposed to enhance thermal stability of a multiple finger power SiGe heterojunction bipolar transistor under different power dissipations. Temperature distribution on the emi... A method of non-uniform finger spacing is proposed to enhance thermal stability of a multiple finger power SiGe heterojunction bipolar transistor under different power dissipations. Temperature distribution on the emitter fingers of a multi-finger SiGe heterojunction bipolar transistor is studied using a numerical electro-thermal model. The results show that the SiGe heterojunction bipolar transistor with non-uniform finger spacing has a small temperature difference between fingers compared with a traditional uniform finger spacing heterojunction bipolar transistor at the same power dissipation. What is most important is that the ability to improve temperature non-uniformity is not weakened as power dissipation increases. So the method of non-uniform finger spacing is very effective in enhancing the thermal stability and the power handing capability of power device. Experimental results verify our conclusions. 展开更多
关键词 heterojunction bipolar transistor thermal coupling power dissipation
下载PDF
MD simulation of a copper rod under thermal shock 被引量:3
14
作者 Rong-Hou Xia Xiao-Geng Tian Ya-Peng Shen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第4期599-604,共6页
In this paper, thermoelastic problem of onedimensional copper rod under thermal shock is simulated using molecular dynamics method by adopting embedded atom method potential. The rod is on axis x, the left outermost s... In this paper, thermoelastic problem of onedimensional copper rod under thermal shock is simulated using molecular dynamics method by adopting embedded atom method potential. The rod is on axis x, the left outermost surface of which is traction free and the right outermost surface is fixed. Free boundary condition is imposed on the outermost surfaces in direction y and z. The left and right ends of the rod are subjected to hot and cold baths, respectively. Temperature, displacement and stress distributions are obtained along the rod at different moments, which are shown to be limited in the mobile region, indicating that the heat propagation speed is limited rather than infinite. This is consistent with the prediction given by generalized thermoelastic theory. From simulation results we find that the speed of heat conduction is the same as the speed of thermal stress wave. In the present paper, the simulations are conducted using the large-scale atomic/molecular massively parallel simulator and completed visualization software. 展开更多
关键词 Embedded atom method potential Molecular dynamics simulation Thermoelastic coupling Thermal stress
下载PDF
Numerical analysis of thermal impact on hydro-mechanical properties of clay 被引量:1
15
作者 Xuerui Wang Hua Shao +3 位作者 Jürgen Hesser Chunliang Zhang Wenqing Wang Olaf Kolditz 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第5期405-416,共12页
As is known, high-level radioactive waste (HLW) is commonly heat-emitting. Heat output from HLWwilldissipate through the surrounding rocks and induce complex thermo-hydro-mechanical-chemical(THMC) processes. In hi... As is known, high-level radioactive waste (HLW) is commonly heat-emitting. Heat output from HLWwilldissipate through the surrounding rocks and induce complex thermo-hydro-mechanical-chemical(THMC) processes. In highly consolidated clayey rocks, thermal effects are particularly significantbecause of their very low permeability and water-saturated state. Thermal impact on the integrity of thegeological barriers is of most importance with regard to the long-term safety of repositories. This studyfocuses on numerical analysis of thermal effects on hydro-mechanical properties of clayey rock using acoupled thermo-mechanical multiphase flow (TH2M) model which is implemented in the finite elementprogramme OpenGeoSys (OGS). The material properties of the numerical model are characterised by atransversal isotropic elastic model based on Hooke's law, a non-isothermal multiphase flow model basedon van Genuchten function and Darcy's law, and a transversal isotropic heat transport model based onFourier's law. In the numerical approaches, special attention has been paid to the thermal expansion ofthree different phases: gas, fluid and solid, which could induce changes in pore pressure and porosity.Furthermore, the strong swelling and shrinkage behaviours of clayey material are also considered in thepresent model. The model has been applied to simulate a laboratory heating experiment on claystone.The numerical model gives a satisfactory representation of the observed material behaviour in thelaboratory experiment. The comparison of the calculated results with the laboratory findings verifies thatthe simulation with the present numerical model could provide a deeper understanding of the observedeffects. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 Radioactive waste disposal Clayey rock Heating experiment Numerical modelling OpenGeoSys(OGS) Thermo-hydro-mechanical(THM) coupling Multiphase flow Thermal effect
下载PDF
A visualization fatigue analysis of a pipeline joint in a special medium environment
16
作者 闫波 姜蔚 王幼清 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第2期187-192,共6页
In this paper,authors have discussed predominately unidirectional Fluid Structure Interaction,i. e. a given field in which a high speed/pressure and high temperature thermal flow affect the interface between pipelines... In this paper,authors have discussed predominately unidirectional Fluid Structure Interaction,i. e. a given field in which a high speed/pressure and high temperature thermal flow affect the interface between pipelines joints. Surface forces at the fluid-structure interface allow designers to investigate the effects of fluid flow on the structural deformation and stresses. Possible failure modes have been compared with different loads from steady thermal flow analysis results. CFD code SC/Tetra and FEA code ANSYS are used in this study. These studies can be used in protecting certain fatigue failures for pipeline joints under critical cyclic load conditions from both thermal expansion and hydraulic pressure in municipal and environmental engineering applications as well as oil and gas fields. 展开更多
关键词 municipal and environmental engineering fluid-structure interaction (FSI) pipeline joint pressure thermal coupling method
下载PDF
32×32 NbN SNSPD array based on thermally coupled row-column multiplexing architecture
17
作者 TianZhu Zhang You Xiao +7 位作者 HuiQin Yu Jia Huang ChaoLin Lv LingDong Kong XiaoYu Liu Hao Li LiXing You Zhen Wang 《Superconductivity》 2023年第3期46-52,共7页
We report a superconducting nanowire single‐photon detector(SNSPD)array aiming for a near‐infrared 1550‐nm wavelength that consists of 32×32 nanowire pixels and an area of 0.96 mm×0.96 mm.Unlike most repo... We report a superconducting nanowire single‐photon detector(SNSPD)array aiming for a near‐infrared 1550‐nm wavelength that consists of 32×32 nanowire pixels and an area of 0.96 mm×0.96 mm.Unlike most reported large‐scale SNSPD arrays with amorphous films,NbN superconducting nanowires are employed in our array,which allows the detector operation at 2.3 K provided by a compact two‐stage Gifford–McMahon cryocooler.Thermally coupled row–column multiplexing is employed in our arrays to avoid current redistribution and loss of electrical signal occurring in the electrically coupled row–column architecture.The fabricated detector array shows a pixel yield of 94%and maximal intrinsic efficiencies of 77%and 96%at 1550 nm and 405 nm,respectively.The timing jitter and the thermal coupling probability are also investigated. 展开更多
关键词 Superconducting nanowire single‐photon detector ARRAY thermally coupled row-column
原文传递
Thermal Performance of a 4 K High-Frequency Pulse Tube Cryocooler with Different Working Fluids
18
作者 GAO Zhaozhao YANG Biao +2 位作者 FAN Xiaoyu CHEN Liubiao WANG Junjie 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第4期1468-1479,共12页
The high-frequency pulse tube cryocooler(HPTC)represents a promising miniature cryocooling technology due to its compact structure and the absence of low-temperature moving components.However,limited to the non-ideal ... The high-frequency pulse tube cryocooler(HPTC)represents a promising miniature cryocooling technology due to its compact structure and the absence of low-temperature moving components.However,limited to the non-ideal gas effect of4He,the HPTC is hard to obtain high cooling performance in the liquid helium temperature range.3He as the working fluid can effectively improve the cooling performance of the HPTC,but the high cost hinders its wide application.In consideration of both cooling performance and cost-effectiveness,this paper explores the feasibility of utilizing^(3)He-^(4)He mixtures as the working fluid for HPTCs.Firstly,the experimental results of a developed HPTC based4He are reported.With a total power consumption of 575 W,the lowest temperature of 3.26 K was observed.And the measured cooling power at 4.2 K was 20.8 mW.Then the theoretical utmost efficiency of the cryocooler was calculated in terms of the thermophysical properties of the working fluids,using ^(3)He-^(4)He mixtures with different compositions as the working fluids.The whole machine modeling of the HPTC was further carried out,and the influence of the working fluids with different components on the structural parameters such as double-inlet and inertance tube,and operating parameters such as pressure and frequency were analyzed.The calculated results show that the cooling power is expected to be increased to36 mW and 53 mW if the equimolar ^(3)He-^(4)He mixture and pure ^(3)He are used,respectively. 展开更多
关键词 high-frequency pulse tube cryocooler ^(3)He-^(4)He mixture liquid helium temperature thermally coupled
原文传递
A modelling method for large-scale open spaces orientated toward coordinated control of multiple air-terminal units
19
作者 Pei Zhou Songjie Wang +4 位作者 Jintao Zhou Syed Asad Hussain Xiaoping Liu Jiajia Gao Gongsheng Huang 《Building Simulation》 SCIE EI CSCD 2023年第2期225-241,共17页
The temperature distribution is always assumed to be homogeneous in a traditional singleinput-single-output(SISO)air conditioning control strategy.However,the airflow inside is more complicated and unpredictable.This ... The temperature distribution is always assumed to be homogeneous in a traditional singleinput-single-output(SISO)air conditioning control strategy.However,the airflow inside is more complicated and unpredictable.This study proposes a zonal temperature control strategy with a thermal coupling effect integrated for air-conditioned large-scale open spaces.The target space was split into several subzones based on the minimum controllable air terminal units in the proposed method,and each zone can be controlled to its own set-point while considering the thermal coupling effect from its adjacent zones.A numerical method resorting to computational fluid dynamics was presented to obtain the heat transfer coefficients(HTCs)under different air supply scenarios.The relationship between heat transfer coefficient and zonal temperature difference was linearized.Thus,currently available zonal models in popular software can be used to simulate the dynamic response of temperatures in large-scale indoor open spaces.Case studies showed that the introduction of HTCs across the adjacent zones was capable of enhancing the precision of temperature control of large-scale open spaces.It could satisfy the temperature requirements of different zones,improve thermal comfort and at least 11%of energy saving can be achieved by comparing with the conventional control strategy. 展开更多
关键词 large-scale open space zonal temperature control CFD thermal coupling heat transfer coefficient TRNSYS
原文传递
Time-dependent development of dynamic resistance voltage of superconducting tape considering heat accumulation
20
作者 Chao Li Yuying Xing +2 位作者 Ying Xin Bin Li Francesco Grilli 《Superconductivity》 2023年第4期43-52,共10页
In flux pumps,motors and superconducting magnets,the high temperature superconductor(HTS)coated conductor frequently carries a DC transport current when an oscillating magnetic field is present in the background.Under... In flux pumps,motors and superconducting magnets,the high temperature superconductor(HTS)coated conductor frequently carries a DC transport current when an oscillating magnetic field is present in the background.Under this circumstance,the interesting effect of dynamic resistance takes place,which can affect the operating performance of superconducting devices:heat accumulation can contribute to the rising temperature of the HTS tape and the dynamic resistance voltage can change accordingly.This article explores the time‐dependent development of the dynamic resistance voltage using a numerical modeling considering the thermal effects.After a validation against experimental results,this work investigates the effects of several factors on the structure of the HTS tape on the time‐dependent development of the dynamic resistance,thus providing insights toward a better understanding of the time‐dependent behavior of HTS tapes under external magnetic fields. 展开更多
关键词 Dynamic resistance High temperature superconductor Electromagnetic‐thermal coupling Finite element method REBCO coated conductors
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部