High ferrotitanium is used as a deoxidizer and alloying agent in steelmaking processes and is mainly produced using high-cost remelting processes.The thermite method is a simple and low-cost method for preparing low f...High ferrotitanium is used as a deoxidizer and alloying agent in steelmaking processes and is mainly produced using high-cost remelting processes.The thermite method is a simple and low-cost method for preparing low ferrotitanium.However,the high levels of S,Al,and O residues in the product severely restrict its applicability in the low-cost preparation of good-quality high ferrotitanium.In this study,a novel multistage deep reduction method for preparing high-quality high ferrotitanium is proposed,and the multistage desulfurization mechanism is systematically investigated.The results indicate that multistage desulfurization is an effective method for reducing the S content of high ferrotitanium prepared via the thermite method.During the strong desulfurization stage,Ti_(2)S reacts with CaO at the slag-metal interface and produces CaS.The S content decreases,while the O content increases,with the increase of CaO in the CaO-Al_(2)O_(3)-based slag.During the deep desulfurization,Ti_(2)S is deeply reduced by the Ca and produces CaS,thus further reducing the S content.The S content decreases with the incremental addition of Ca and can be reduced to 0.035 wt%after multistage desulfurization.展开更多
基金financially supported by the Technology Program of Henan Province(No.202102210207)the National Key Research and Development Plan(No.2017YFB0305401)+2 种基金the National Natural Science Foundation of China(Nos.51422403 and 51774078)the Fundamental Research Funds for the Central Universities(Nos.N162505002,N172506009 and N170908001)the Key Science and Shenyang Science and Technology Project(No.17-500-8-01)。
文摘High ferrotitanium is used as a deoxidizer and alloying agent in steelmaking processes and is mainly produced using high-cost remelting processes.The thermite method is a simple and low-cost method for preparing low ferrotitanium.However,the high levels of S,Al,and O residues in the product severely restrict its applicability in the low-cost preparation of good-quality high ferrotitanium.In this study,a novel multistage deep reduction method for preparing high-quality high ferrotitanium is proposed,and the multistage desulfurization mechanism is systematically investigated.The results indicate that multistage desulfurization is an effective method for reducing the S content of high ferrotitanium prepared via the thermite method.During the strong desulfurization stage,Ti_(2)S reacts with CaO at the slag-metal interface and produces CaS.The S content decreases,while the O content increases,with the increase of CaO in the CaO-Al_(2)O_(3)-based slag.During the deep desulfurization,Ti_(2)S is deeply reduced by the Ca and produces CaS,thus further reducing the S content.The S content decreases with the incremental addition of Ca and can be reduced to 0.035 wt%after multistage desulfurization.