Coupled relations among temperature, phase transformation and stress have beendiscussed here in the present paper. Thermo-elasto-plastic constitutive equationsincluding creep and iterative finite element formulation d...Coupled relations among temperature, phase transformation and stress have beendiscussed here in the present paper. Thermo-elasto-plastic constitutive equationsincluding creep and iterative finite element formulation during continuous casting withphase change have also been presented.展开更多
In this paper, we describe a new silicon-die thermal monitoring approach using spatiotemporal signal processing technique for Wafer-Scale IC thermome- chanical stress monitoring. It is proposed in the context of a waf...In this paper, we describe a new silicon-die thermal monitoring approach using spatiotemporal signal processing technique for Wafer-Scale IC thermome- chanical stress monitoring. It is proposed in the context of a wafer-scale-based (WaferICTM) rapid prototyping platform for electronic systems. This technique will be embedded into the structure of the WaferIC, and will be used as a preventive measure to protect the wafer from possible damages that can be caused by excessive thermomechanical stress. The paper also presents spatial and spatiotemporal algorithms and the experimental results from an IR images collection campaign conducted using an IR camera.展开更多
The linear isothermo-viscoelastic constitutive equation is established according to the principle of viscoelastic mechanics. Given the boundary conditions of the temperature field, the linear thermo-viscoelastic const...The linear isothermo-viscoelastic constitutive equation is established according to the principle of viscoelastic mechanics. Given the boundary conditions of the temperature field, the linear thermo-viscoelastic constitutive equation is established acording to the analysis of the thermorheologically simple. The stress analysis model is constructed on the base of some reasonable hypotheses which consider the restraint conditions of mold and the characteristics of injection molding in the post-filling stage. The mathematical model is calculated by the finite difference method. The results can help to predict the warpage of plastic products.展开更多
In the squeeze casting process, loaded high pressure (over approximately 200 MPa) and high temperature influence the thermo-mechanical behavior and performance of the used metal mold. Therefore, to safely maintain t...In the squeeze casting process, loaded high pressure (over approximately 200 MPa) and high temperature influence the thermo-mechanical behavior and performance of the used metal mold. Therefore, to safely maintain the metal molds, the thermo-mechanical characteristics (temperature and thermal stress) of metal mold in the squeeze casting must be investigated. In this paper, temperature and thermal stress distribution of steel mold in squeeze casting process were investigated by using a three-dimensional non-steady heat conduction analysis and a three-dimensional thermal elastic-plastic analysis considering temperature-dependent thermophysical and mechanical properties of the steel mold.展开更多
Transformation plasticity is known to play an important role in the course of heat treatment processes, and so affect the results of heat treatment simulations, which means that the transformation plasticity coefficie...Transformation plasticity is known to play an important role in the course of heat treatment processes, and so affect the results of heat treatment simulations, which means that the transformation plasticity coefficient is necessary to be identifies. The authors developed a new method by use of four-point bending system of a beam to identify transformation plasticity coefficient taking advantage of its easiness and high accuracy compared with other conventional methods like tension test, etc., and identified the coefficient for four kinds of steels; plane carbon steel, Cr-steel, Cr-Mo steel and bearing steel. In this paper, further experimental data are presented for the steels if the coefficient Kp during pearlite transformation depend on the applied stress. Obtained results reveals that the stress dependence of Kp is rather trivial except for uncertain tendency detected in plane carbon steel. The relation between the Kp and carbon content included is discussed in comparison with other data referred from references.展开更多
Systematic physical simulation of thermo-mechanical processing routes has been ap-plied on a Gleeble 1500 simulator to four copper alloys (mass %) Cu-0.57Co-0.32Si,Cu-0.55Cr-0.065P, Cu-0.22Zr-0.035Si and Cu-1.01Ni-0.4...Systematic physical simulation of thermo-mechanical processing routes has been ap-plied on a Gleeble 1500 simulator to four copper alloys (mass %) Cu-0.57Co-0.32Si,Cu-0.55Cr-0.065P, Cu-0.22Zr-0.035Si and Cu-1.01Ni-0.43Si aimed at clarifying theinfluences of processing conditions on their final properties, strength and electricalconductivity. Flow curves were determined over wide temperature and strain rateranges. Hardness was used as a measure of the strength level achieved. High hard-ness was obtained as using equal amounts (strains 0.5) of cold deformation beforeand after the precipitation annealing stage. The maximum values achieved for theCu-Co-Si, Cu-Cr-P, Cu-Zr-Si and Cu-Ni-Si alloys were 190, 165, 178 and 193 HV5,respectively. A thermo-mechanical schedule involving the hot deformation-ageing-colddeformation stages showed even better results for the Cu-Zr-Si alloy. Consequently,the processing routes were designed based on simulation test results and wires of 5 and2mm in diameters have been successfully processed in the industrial scale.展开更多
Using molecular dynamics (MD) simulation, we study the thermal shock behavior of tungsten (W), which has been used for the plasma facing material (PFM) of tokamaks. The thermo-elastic stress wave, corresponding ...Using molecular dynamics (MD) simulation, we study the thermal shock behavior of tungsten (W), which has been used for the plasma facing material (PFM) of tokamaks. The thermo-elastic stress wave, corresponding to the collective displacement of atoms, is analyzed with the Lagrangian atomic stress method, of which the reliability is also analyzed. The stress wave velocity corresponds to the speed of sound in the material, which is not dependent on the thermal shock energy. The peak pressure of a normal stress wave increases with the increase of thermal shock energy. We analyze the temperature evolution of the thermal shock region according to the Fourier transformation. It can be seen that the “obvious” velocity of heat propagation is less than the velocity of the stress wave; further, that the thermo-elastic stress wave may contribute little to the transport of kinetic energy. The heat propagation can be described properly by the heat conduction equation. These results may be useful for understanding the process of the thermal shock of tungsten.展开更多
The removal of the binder from the powder compacts (debinding) can be a slow step and a source of problems. To improve the debinding process of powder injection molding operation, it’s necessary to understand the the...The removal of the binder from the powder compacts (debinding) can be a slow step and a source of problems. To improve the debinding process of powder injection molding operation, it’s necessary to understand the thermal and mechanical properties of powder injection molding feedstocks and to find the major causes responsible for molding difficulties and compacts shape retention during debinding process. The effects of thermo mechanical properties of the PIM feedstock on the compacts shape retention during debinding process were discussed and explained from practical point of view. The results indicate that the heat of fusion affects the cooling time. The binder component with high heat of fusion and high decomposed temperature is more effective as the second binder component for the compact to retain its shape during debinding.展开更多
Hot compressive deformation of Ti600 alloy after thermo hydrogen treatment (THT) was carried out within hydrogen content range of 0-0.5%, temperature range of 760-920 ℃ and strain rate range of 0.01-10 s-1. The flow ...Hot compressive deformation of Ti600 alloy after thermo hydrogen treatment (THT) was carried out within hydrogen content range of 0-0.5%, temperature range of 760-920 ℃ and strain rate range of 0.01-10 s-1. The flow stress of Ti600 alloy after THT was obtained under hot deformation condition, and the influence of hydrogen on work-hardening rate (S*), strain energy density (U*), and deformation activation energy (Q) was analysed. The results show that the flow stress of Ti600 alloy decreases remarkably with the increase of hydrogen when the hydrogen content is less than 0.3%. Both S* and U* decrease with the increase of hydrogen when the hydrogen content is less than 0.3%, and when the hydrogen content is more than 0.3%, S* and U* increase with hydrogen addition. The value of Q decreases with the increase of strain at the same hydrogen content. The addition of small quantity of hydrogen leads to an increase of Q at small strain values, and when the strain reaches 0.6, the value of Q decreases gradually with the increase of hydrogen. When the hydrogen content is within the range of 0.1%-0.3%, the flow stress of Ti600 alloy is decreased when being deformed at the temperature range of 760-920 ℃.展开更多
Thermal, mechanical and microstructural phenomena are involved in the process of steel quenching. Based on the coupled metallo-thermo-mechanics theory, a calculation model has been developed in this study to simulate ...Thermal, mechanical and microstructural phenomena are involved in the process of steel quenching. Based on the coupled metallo-thermo-mechanics theory, a calculation model has been developed in this study to simulate the quenching process of a gas turbine compressor disk by finite element method. The thermal physical and mechanical properties were treated as a functions of temperature. Moreover, a series of subroutines were developed on the MARC software platform. Consequently, simulated results on temperature, internal stress and distortion during the quenching were illustrated. With the aid of the simulated results, an optimum quenching scheme was proposed. The quenching process simulated in this study appears to be a promising tool in design of heat-treatment processing parameters for gas turbine compressor disks.展开更多
The transient finite element technique is applied, and a transient heat conduction model of wet brake friction disk is established. For obtaining the accurate heat flow density mathematic model and avoiding possibly i...The transient finite element technique is applied, and a transient heat conduction model of wet brake friction disk is established. For obtaining the accurate heat flow density mathematic model and avoiding possibly instable thermoelastic stress produced by the non uniform contact pressure of friction pair, a test method is applied to collect accurate contact pressure between the dual sheet steel and friction disk in the combining process. And then the heat-flow density and transient ther mo mechanical coupling simulation are analyzed. At the same time all possible boundary conditions are considered, such as the heat generation, heat conduction problem, relation between friction and contact, variation in load and heat change problem etc. The simulation results show that the me chanical model of thermo mechanical coupling can express well the dynamic characteristics of fric tion disk, and gives perfect reference for more study on thermoelastic distortion of brake friction pairs.展开更多
A research work was performed under sub-tropical condition (24°8'N, 90°0'E) at Bangabandhu Sheikh Mujibur Rahman Agricultural University with three wheat genotypes (BARI Gom 25, BARI Gom 26 and...A research work was performed under sub-tropical condition (24°8'N, 90°0'E) at Bangabandhu Sheikh Mujibur Rahman Agricultural University with three wheat genotypes (BARI Gom 25, BARI Gom 26 and Pavon 76) to observe the mobilization of seed reserve and seedling growth under normal (15°C/25°C) and elevated (25°C/35°C) temperature in growth chamber. The effect of high temperature on wheat seedling was observed in terms of mobilized seed reserve, respiration and transpiration efficiency and seedling growth. At 35°C temperature, maximum mobilization of seed reserve was observed in BARI Gom varieties (BARI Gom 25 and 26) but the respiration efficiency was higher in Pavon 76 in comparison to other genotypes. Maximum loss of respiration and transpiration at 35°C temperature was found to produce low seedling growth in Pavon 76. It appeared from the result that at high temperature the maximum mobilized seed reserve and subsequently minimum loss of respiration and transpiration collectively contributed a positive role for better seedling growth in BARI Gom 25 and BARI Gom 26. Therefore the better mobilized seed reserve and subsequently minimum loss of respiration and transpiration during seedling development are indicators of the thermo tolerance in growing wheat seedling.展开更多
In this study, the behavior of polycrystalline metals at different temperatures is investigated by a new thermo-elasto-plasticity constitutive theory. Based on solid mechanical and interatomic potential, the constitut...In this study, the behavior of polycrystalline metals at different temperatures is investigated by a new thermo-elasto-plasticity constitutive theory. Based on solid mechanical and interatomic potential, the constitutive equa- tion is established using a new decomposition of the deformation gradient. For polycrystalline copper and magnesium, the stress-strain curves from 77 to 764 K (copper), and 77 to 870 K (magnesium) under quasi-static uniaxial loading are calculated, and then the calculated results are compared with the experiment results. Also, it is determined that the present model has the capacity to describe the decrease of the elastic modulus and yield stress with the increasing temperature, as well as the change of hardening behaviors of the polycrystalline metals. The calculation process is simple and explicit, which makes it easy to implement into the applications.展开更多
文摘Coupled relations among temperature, phase transformation and stress have beendiscussed here in the present paper. Thermo-elasto-plastic constitutive equationsincluding creep and iterative finite element formulation during continuous casting withphase change have also been presented.
文摘In this paper, we describe a new silicon-die thermal monitoring approach using spatiotemporal signal processing technique for Wafer-Scale IC thermome- chanical stress monitoring. It is proposed in the context of a wafer-scale-based (WaferICTM) rapid prototyping platform for electronic systems. This technique will be embedded into the structure of the WaferIC, and will be used as a preventive measure to protect the wafer from possible damages that can be caused by excessive thermomechanical stress. The paper also presents spatial and spatiotemporal algorithms and the experimental results from an IR images collection campaign conducted using an IR camera.
文摘The linear isothermo-viscoelastic constitutive equation is established according to the principle of viscoelastic mechanics. Given the boundary conditions of the temperature field, the linear thermo-viscoelastic constitutive equation is established acording to the analysis of the thermorheologically simple. The stress analysis model is constructed on the base of some reasonable hypotheses which consider the restraint conditions of mold and the characteristics of injection molding in the post-filling stage. The mathematical model is calculated by the finite difference method. The results can help to predict the warpage of plastic products.
文摘In the squeeze casting process, loaded high pressure (over approximately 200 MPa) and high temperature influence the thermo-mechanical behavior and performance of the used metal mold. Therefore, to safely maintain the metal molds, the thermo-mechanical characteristics (temperature and thermal stress) of metal mold in the squeeze casting must be investigated. In this paper, temperature and thermal stress distribution of steel mold in squeeze casting process were investigated by using a three-dimensional non-steady heat conduction analysis and a three-dimensional thermal elastic-plastic analysis considering temperature-dependent thermophysical and mechanical properties of the steel mold.
基金one part of the fruits of VHT(Virtual Heat Treatment)Project of IMS(Intelligent Manufacturing Science)Program supported by Ministry of Economy,Trade and Industries,Japan.
文摘Transformation plasticity is known to play an important role in the course of heat treatment processes, and so affect the results of heat treatment simulations, which means that the transformation plasticity coefficient is necessary to be identifies. The authors developed a new method by use of four-point bending system of a beam to identify transformation plasticity coefficient taking advantage of its easiness and high accuracy compared with other conventional methods like tension test, etc., and identified the coefficient for four kinds of steels; plane carbon steel, Cr-steel, Cr-Mo steel and bearing steel. In this paper, further experimental data are presented for the steels if the coefficient Kp during pearlite transformation depend on the applied stress. Obtained results reveals that the stress dependence of Kp is rather trivial except for uncertain tendency detected in plane carbon steel. The relation between the Kp and carbon content included is discussed in comparison with other data referred from references.
文摘Systematic physical simulation of thermo-mechanical processing routes has been ap-plied on a Gleeble 1500 simulator to four copper alloys (mass %) Cu-0.57Co-0.32Si,Cu-0.55Cr-0.065P, Cu-0.22Zr-0.035Si and Cu-1.01Ni-0.43Si aimed at clarifying theinfluences of processing conditions on their final properties, strength and electricalconductivity. Flow curves were determined over wide temperature and strain rateranges. Hardness was used as a measure of the strength level achieved. High hard-ness was obtained as using equal amounts (strains 0.5) of cold deformation beforeand after the precipitation annealing stage. The maximum values achieved for theCu-Co-Si, Cu-Cr-P, Cu-Zr-Si and Cu-Ni-Si alloys were 190, 165, 178 and 193 HV5,respectively. A thermo-mechanical schedule involving the hot deformation-ageing-colddeformation stages showed even better results for the Cu-Zr-Si alloy. Consequently,the processing routes were designed based on simulation test results and wires of 5 and2mm in diameters have been successfully processed in the industrial scale.
基金Project supported by the National Magnetic Confinement Fusion Science Program of China(Grant No.2013GB109004)the National Natural Science Foundation of China(Grant Nos.51071095 and 50971077)
文摘Using molecular dynamics (MD) simulation, we study the thermal shock behavior of tungsten (W), which has been used for the plasma facing material (PFM) of tokamaks. The thermo-elastic stress wave, corresponding to the collective displacement of atoms, is analyzed with the Lagrangian atomic stress method, of which the reliability is also analyzed. The stress wave velocity corresponds to the speed of sound in the material, which is not dependent on the thermal shock energy. The peak pressure of a normal stress wave increases with the increase of thermal shock energy. We analyze the temperature evolution of the thermal shock region according to the Fourier transformation. It can be seen that the “obvious” velocity of heat propagation is less than the velocity of the stress wave; further, that the thermo-elastic stress wave may contribute little to the transport of kinetic energy. The heat propagation can be described properly by the heat conduction equation. These results may be useful for understanding the process of the thermal shock of tungsten.
文摘The removal of the binder from the powder compacts (debinding) can be a slow step and a source of problems. To improve the debinding process of powder injection molding operation, it’s necessary to understand the thermal and mechanical properties of powder injection molding feedstocks and to find the major causes responsible for molding difficulties and compacts shape retention during debinding process. The effects of thermo mechanical properties of the PIM feedstock on the compacts shape retention during debinding process were discussed and explained from practical point of view. The results indicate that the heat of fusion affects the cooling time. The binder component with high heat of fusion and high decomposed temperature is more effective as the second binder component for the compact to retain its shape during debinding.
基金Project supported by the Major Basic Research Program of National Security of China
文摘Hot compressive deformation of Ti600 alloy after thermo hydrogen treatment (THT) was carried out within hydrogen content range of 0-0.5%, temperature range of 760-920 ℃ and strain rate range of 0.01-10 s-1. The flow stress of Ti600 alloy after THT was obtained under hot deformation condition, and the influence of hydrogen on work-hardening rate (S*), strain energy density (U*), and deformation activation energy (Q) was analysed. The results show that the flow stress of Ti600 alloy decreases remarkably with the increase of hydrogen when the hydrogen content is less than 0.3%. Both S* and U* decrease with the increase of hydrogen when the hydrogen content is less than 0.3%, and when the hydrogen content is more than 0.3%, S* and U* increase with hydrogen addition. The value of Q decreases with the increase of strain at the same hydrogen content. The addition of small quantity of hydrogen leads to an increase of Q at small strain values, and when the strain reaches 0.6, the value of Q decreases gradually with the increase of hydrogen. When the hydrogen content is within the range of 0.1%-0.3%, the flow stress of Ti600 alloy is decreased when being deformed at the temperature range of 760-920 ℃.
文摘Thermal, mechanical and microstructural phenomena are involved in the process of steel quenching. Based on the coupled metallo-thermo-mechanics theory, a calculation model has been developed in this study to simulate the quenching process of a gas turbine compressor disk by finite element method. The thermal physical and mechanical properties were treated as a functions of temperature. Moreover, a series of subroutines were developed on the MARC software platform. Consequently, simulated results on temperature, internal stress and distortion during the quenching were illustrated. With the aid of the simulated results, an optimum quenching scheme was proposed. The quenching process simulated in this study appears to be a promising tool in design of heat-treatment processing parameters for gas turbine compressor disks.
基金Supported by the National Basic Research Program of China("973"Program)(613002)
文摘The transient finite element technique is applied, and a transient heat conduction model of wet brake friction disk is established. For obtaining the accurate heat flow density mathematic model and avoiding possibly instable thermoelastic stress produced by the non uniform contact pressure of friction pair, a test method is applied to collect accurate contact pressure between the dual sheet steel and friction disk in the combining process. And then the heat-flow density and transient ther mo mechanical coupling simulation are analyzed. At the same time all possible boundary conditions are considered, such as the heat generation, heat conduction problem, relation between friction and contact, variation in load and heat change problem etc. The simulation results show that the me chanical model of thermo mechanical coupling can express well the dynamic characteristics of fric tion disk, and gives perfect reference for more study on thermoelastic distortion of brake friction pairs.
文摘A research work was performed under sub-tropical condition (24°8'N, 90°0'E) at Bangabandhu Sheikh Mujibur Rahman Agricultural University with three wheat genotypes (BARI Gom 25, BARI Gom 26 and Pavon 76) to observe the mobilization of seed reserve and seedling growth under normal (15°C/25°C) and elevated (25°C/35°C) temperature in growth chamber. The effect of high temperature on wheat seedling was observed in terms of mobilized seed reserve, respiration and transpiration efficiency and seedling growth. At 35°C temperature, maximum mobilization of seed reserve was observed in BARI Gom varieties (BARI Gom 25 and 26) but the respiration efficiency was higher in Pavon 76 in comparison to other genotypes. Maximum loss of respiration and transpiration at 35°C temperature was found to produce low seedling growth in Pavon 76. It appeared from the result that at high temperature the maximum mobilized seed reserve and subsequently minimum loss of respiration and transpiration collectively contributed a positive role for better seedling growth in BARI Gom 25 and BARI Gom 26. Therefore the better mobilized seed reserve and subsequently minimum loss of respiration and transpiration during seedling development are indicators of the thermo tolerance in growing wheat seedling.
基金supported by the National Natural Science Foundation of China (Grants 11021262, 11172303, 11132011)National Basic Research Program of China through 2012CB937500
文摘In this study, the behavior of polycrystalline metals at different temperatures is investigated by a new thermo-elasto-plasticity constitutive theory. Based on solid mechanical and interatomic potential, the constitutive equa- tion is established using a new decomposition of the deformation gradient. For polycrystalline copper and magnesium, the stress-strain curves from 77 to 764 K (copper), and 77 to 870 K (magnesium) under quasi-static uniaxial loading are calculated, and then the calculated results are compared with the experiment results. Also, it is determined that the present model has the capacity to describe the decrease of the elastic modulus and yield stress with the increasing temperature, as well as the change of hardening behaviors of the polycrystalline metals. The calculation process is simple and explicit, which makes it easy to implement into the applications.