An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanic...An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanical properties were predicted for different process parameters. In the later passes full recrystallization becomes difficult to occur and higher residual strain remains in austenite after rolling. For the reasonable temperature and cooling schedule, yield strength of 30 mm plain carbon steel plate can reach 310 MPa. The first on-line application of prediction and control of microstructure and properties (PCMP) in the medium plate production was achieved. The predictions of the system are in good agreement with measurements.展开更多
Effect of controlled rolling and cooling process on the mechanical properties of low carbon cold forging steel was investigated for different processing parameters of a laboratory hot rolling mill. The results show th...Effect of controlled rolling and cooling process on the mechanical properties of low carbon cold forging steel was investigated for different processing parameters of a laboratory hot rolling mill. The results show that the specimens with fast cooling after hot rolling exhibit very good mechanical properties, and the improvement of the mechanical properties can be attributed mainly to the ferrite-grain refinement. The mechanical properties increase with decreasing final cooling temperature within the range from 670 ℃ to 570 ℃ due to the finer interlamellar spacing of pearlite colony. The specimen with fast cooling after low temperature rolling shows the highest values of the mechanical properties. The effect of the ferrite grain size on the mechanical properties was greater than that of pearlite morphology in the present study. The mechanical properties of specimens by controlled rolling and cooling process without thermal treatment were greatly superior to that of the same specimens by the conventional rolling, and their tensile strength reached 490 MPa grade even in the case of low temperature rolling without controlled rolling. It might be expected to realize the substitution medium-carbon by low-carbon for 490 MPa grade cold forging steel with controlled rolling and cooling process.展开更多
The change and control of nitrogen content in molten steel was investigated through the production process of "LDBAr-LF-RH-CC". Results show that nitrogen content reduces gradually in converter-steelmaking s...The change and control of nitrogen content in molten steel was investigated through the production process of "LDBAr-LF-RH-CC". Results show that nitrogen content reduces gradually in converter-steelmaking stage, rises rapidly from the end of converter process to the end of argon station process, continues to increase in ladle furnace process, and decreases slightly in RH refining stage. Since nitrogen is removed mainly by BOF steelmaking and vacuum refining operations, nitrogen in molten steel should be removed as much as possible in these two operations. However, nitrogen uptake should be minimized in other operations of molten steel production process.展开更多
The general construction procedure of the steel middle pylon is briefly introduced. The alignment control of the pylon is carried out during the whole process of the construction. The control concept is extended to th...The general construction procedure of the steel middle pylon is briefly introduced. The alignment control of the pylon is carried out during the whole process of the construction. The control concept is extended to the manufacture stage. The manufacturing alignment error is strictly controlled in the segments precast process in factory, and the error is recognized and predicted precisely during the installation stage. The adjusting joints are employed to amend the accumulated error, which ensure that the steel pylon alignment could satisfy the precision requirements after installation.展开更多
A robot flexible processing system of shipbuilding profile steel was developed. The system consists of computer integrated control and robot. An off line programming robot was used for marking and cutting of shipbuil...A robot flexible processing system of shipbuilding profile steel was developed. The system consists of computer integrated control and robot. An off line programming robot was used for marking and cutting of shipbuilding profile steel. In the system the deformation and position error of profile steel can be detected by precise sensors, and figure position coordinate error resulted from profile steel deformation can be compensated by modifying traveling track of robotic arm online. The practical operation results show that the system performance can meet the needs of profile steel processing.展开更多
The transformation productions of hot-deformation simulation experiments were investigated using a Gleeble-1500 hot simulator for a commercial pipeline steel. Based on the investigation results, the improved thermo-me...The transformation productions of hot-deformation simulation experiments were investigated using a Gleeble-1500 hot simulator for a commercial pipeline steel. Based on the investigation results, the improved thermo-mechanical control processing (TMCP) schedules containing a two stage multi-pass controlled rolling coupled with moderate cooling rates were applied to hot rolling experiments and acicular ferrite dominated microstructure was obtained. Microstructures and mechanical properties of hot rolled plates were related to TMCP processing, and regression equations describing the relation between processing parameters and mechanical properties in the current TMCP were developed, which could be used to predict mechanical properties of the experimental steel during commercially processing. It was found that with an increase in cooling rate after hot rolling, grain size in the microstructure became smaller, the amount of polygonal ferrite decreased and acicular ferrite increased, and accordingly mechanical properties increased.展开更多
There is an ever-growing demand for lightweighting of steel for structural applications,particularly for automobile and transportation applications.It is mainly to improve the fuel efficiency,reduce the CO_(2) emissio...There is an ever-growing demand for lightweighting of steel for structural applications,particularly for automobile and transportation applications.It is mainly to improve the fuel efficiency,reduce the CO_(2) emissions and cater the increased passenger safety.Hence,the main focus is to reduce the density of the steel structure without affecting other properties.This can be achieved by down-gauging of the conventional steel by replacing the steel with higher strength,however,it is limited by dent resistance and stiffness.So,the novel idea is to reduce the density of the steel itself.It is well-known that addition of Al to steel reduces the density of the steel.About 1wt% of Al addition to steel can reduce the density by 1.3%,decreases the elastic modulus by 2% and it improves the strength by about 40 MPa.There is a new class of low-density/lightweight steel with addition of about 6-9 wt% Al to steel.Addition of higher than 9 wt%of Al in steel leads to embrittlement issues due to ordering and environmental effect.These disordered Fe-Al lightweight steels have raised considerable interest due to their low-density,high ductility,costeffectiveness and feasibility for bulk production.The low-density steels are envisaged in the development of an advanced lightweight ground transportation system,huge structures and also for certain defence applications and in thermal power plants.展开更多
Gas metal arc welding experiments were conducted on two types of steels with 0.41% carbon equivalent(Ceq) and 0.31% Cequsing WER70T wire and 20% CO_(2)and 80% Ar as shielding gas.The two types of steels show satisfact...Gas metal arc welding experiments were conducted on two types of steels with 0.41% carbon equivalent(Ceq) and 0.31% Cequsing WER70T wire and 20% CO_(2)and 80% Ar as shielding gas.The two types of steels show satisfactory weldability.The transition temperatures of 50% upper shelf energy(Tk0.5) for Charpy-V impact test of both the welded joints are below-40 ℃.However, the toughness of the fusion line zone and heat-affected zone(HAZ) of the two steel joints exhibits differences, with the toughness of 0.41% Ceqsteel being better than that of 0.31% Ceqsteel.The Tk0.5of the fusion line zone and the HAZ of 0.41% Ceqsteel is below-60℃,whereas that of 0.31% Ceqsteel is above-40℃.The welded joint of 0.41% Ceqsteel has low hardness fluctuation, while that of 0.31% Ceqsteel exhibits a narrow, softened zone, which has no obvious influence on the tested tensile strength.The coarse grain heat-affected zone(CGHAZ)microstructure of 0.41% Ceqsteel is bainite, while that of 0.31% Ceqsteel is bainite with ferrite and minor pearlite.展开更多
The effect of martensite–austenite(M–A)constituents formed in thermo-mechanical controlled process on impact toughness of 20CrNi2MoV steel was investigated.The variation in fraction,size and morphology of M–A const...The effect of martensite–austenite(M–A)constituents formed in thermo-mechanical controlled process on impact toughness of 20CrNi2MoV steel was investigated.The variation in fraction,size and morphology of M–A constituent and its effect on toughness under different cooling rates were carried out.The result shows that there was no significant change in the fraction of M–A constituent under different cooling rates,but the distribution and size of M–A constituent were greatly influenced by cooling rate,which consequently influenced toughness.The amount of large blocky M–A constituents decreased from 4.7%to 1.7%,while that of elongated M–A constituents increased from 3.8%to 8.6%with the cooling rate increasing from 7 to 26°C/s,and the corresponding impact energy decreased from 132 to 84 J.The deterioration of impact toughness could be related to the increase in the elongated M–A constituents.The elongated M–A constituents existing along the prior austenite grain boundaries in samples of 26°C/s could easily lead to the formation of cleavage crack,which then results in the lower crack initiation energy than that of low cooling rate samples.展开更多
Experiments were conducted to evaluate the microstructure and tensile properties of a medium carbon Cr-Ni-W-Mo steel processedthermo-mechanical controlled processing(TMCP)with cooling at different conditions in water,...Experiments were conducted to evaluate the microstructure and tensile properties of a medium carbon Cr-Ni-W-Mo steel processedthermo-mechanical controlled processing(TMCP)with cooling at different conditions in water,oil,air or lime followedlow tempering.Compared to normal heat-treatment processing,TMCP with water-cooling after deformation enhances the yield strength and tensile strength of the steelabout 323 MPa and about 251 MPa,respectively,due to higher dislocation strengthening and grain boundary strengthening.Meanwhile,it increases the elongation by ;about 1.76%attributed to the increase in volume percentage of the retained austenite and the refined laths of tempered martensite.Slowing the cooling rate after deformation during TMCP leads to a decrease in the strength.This results the coupling effectsthe reduction in dislocation density and volume fraction of tempered martensite together with the coarseness in martensite sizes.However,cooling rate decreasing has less influences on ductility becathe improved elongation the increase in the volume fractions of both retained austenite and lower bainite together with dislocation density decreasing is compensatedthe reduced elongation coarsened grains.展开更多
基金This work was financially supported by the High Technology Development Program(No.2001AA339030)the National Natural Science Foundation of China(No.50334010).
文摘An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanical properties were predicted for different process parameters. In the later passes full recrystallization becomes difficult to occur and higher residual strain remains in austenite after rolling. For the reasonable temperature and cooling schedule, yield strength of 30 mm plain carbon steel plate can reach 310 MPa. The first on-line application of prediction and control of microstructure and properties (PCMP) in the medium plate production was achieved. The predictions of the system are in good agreement with measurements.
基金Funded by Shenyang City Application Basic Research Project (No. 1071198-1-00)
文摘Effect of controlled rolling and cooling process on the mechanical properties of low carbon cold forging steel was investigated for different processing parameters of a laboratory hot rolling mill. The results show that the specimens with fast cooling after hot rolling exhibit very good mechanical properties, and the improvement of the mechanical properties can be attributed mainly to the ferrite-grain refinement. The mechanical properties increase with decreasing final cooling temperature within the range from 670 ℃ to 570 ℃ due to the finer interlamellar spacing of pearlite colony. The specimen with fast cooling after low temperature rolling shows the highest values of the mechanical properties. The effect of the ferrite grain size on the mechanical properties was greater than that of pearlite morphology in the present study. The mechanical properties of specimens by controlled rolling and cooling process without thermal treatment were greatly superior to that of the same specimens by the conventional rolling, and their tensile strength reached 490 MPa grade even in the case of low temperature rolling without controlled rolling. It might be expected to realize the substitution medium-carbon by low-carbon for 490 MPa grade cold forging steel with controlled rolling and cooling process.
文摘The change and control of nitrogen content in molten steel was investigated through the production process of "LDBAr-LF-RH-CC". Results show that nitrogen content reduces gradually in converter-steelmaking stage, rises rapidly from the end of converter process to the end of argon station process, continues to increase in ladle furnace process, and decreases slightly in RH refining stage. Since nitrogen is removed mainly by BOF steelmaking and vacuum refining operations, nitrogen in molten steel should be removed as much as possible in these two operations. However, nitrogen uptake should be minimized in other operations of molten steel production process.
基金National Science and Technology Support Program of China ( No. 2009BAG15B02) Key Pro-grams for Science and Technology Development of Chinese Transportation Industry( No. 2008-353-332-180)
文摘The general construction procedure of the steel middle pylon is briefly introduced. The alignment control of the pylon is carried out during the whole process of the construction. The control concept is extended to the manufacture stage. The manufacturing alignment error is strictly controlled in the segments precast process in factory, and the error is recognized and predicted precisely during the installation stage. The adjusting joints are employed to amend the accumulated error, which ensure that the steel pylon alignment could satisfy the precision requirements after installation.
文摘A robot flexible processing system of shipbuilding profile steel was developed. The system consists of computer integrated control and robot. An off line programming robot was used for marking and cutting of shipbuilding profile steel. In the system the deformation and position error of profile steel can be detected by precise sensors, and figure position coordinate error resulted from profile steel deformation can be compensated by modifying traveling track of robotic arm online. The practical operation results show that the system performance can meet the needs of profile steel processing.
文摘The transformation productions of hot-deformation simulation experiments were investigated using a Gleeble-1500 hot simulator for a commercial pipeline steel. Based on the investigation results, the improved thermo-mechanical control processing (TMCP) schedules containing a two stage multi-pass controlled rolling coupled with moderate cooling rates were applied to hot rolling experiments and acicular ferrite dominated microstructure was obtained. Microstructures and mechanical properties of hot rolled plates were related to TMCP processing, and regression equations describing the relation between processing parameters and mechanical properties in the current TMCP were developed, which could be used to predict mechanical properties of the experimental steel during commercially processing. It was found that with an increase in cooling rate after hot rolling, grain size in the microstructure became smaller, the amount of polygonal ferrite decreased and acicular ferrite increased, and accordingly mechanical properties increased.
文摘There is an ever-growing demand for lightweighting of steel for structural applications,particularly for automobile and transportation applications.It is mainly to improve the fuel efficiency,reduce the CO_(2) emissions and cater the increased passenger safety.Hence,the main focus is to reduce the density of the steel structure without affecting other properties.This can be achieved by down-gauging of the conventional steel by replacing the steel with higher strength,however,it is limited by dent resistance and stiffness.So,the novel idea is to reduce the density of the steel itself.It is well-known that addition of Al to steel reduces the density of the steel.About 1wt% of Al addition to steel can reduce the density by 1.3%,decreases the elastic modulus by 2% and it improves the strength by about 40 MPa.There is a new class of low-density/lightweight steel with addition of about 6-9 wt% Al to steel.Addition of higher than 9 wt%of Al in steel leads to embrittlement issues due to ordering and environmental effect.These disordered Fe-Al lightweight steels have raised considerable interest due to their low-density,high ductility,costeffectiveness and feasibility for bulk production.The low-density steels are envisaged in the development of an advanced lightweight ground transportation system,huge structures and also for certain defence applications and in thermal power plants.
文摘Gas metal arc welding experiments were conducted on two types of steels with 0.41% carbon equivalent(Ceq) and 0.31% Cequsing WER70T wire and 20% CO_(2)and 80% Ar as shielding gas.The two types of steels show satisfactory weldability.The transition temperatures of 50% upper shelf energy(Tk0.5) for Charpy-V impact test of both the welded joints are below-40 ℃.However, the toughness of the fusion line zone and heat-affected zone(HAZ) of the two steel joints exhibits differences, with the toughness of 0.41% Ceqsteel being better than that of 0.31% Ceqsteel.The Tk0.5of the fusion line zone and the HAZ of 0.41% Ceqsteel is below-60℃,whereas that of 0.31% Ceqsteel is above-40℃.The welded joint of 0.41% Ceqsteel has low hardness fluctuation, while that of 0.31% Ceqsteel exhibits a narrow, softened zone, which has no obvious influence on the tested tensile strength.The coarse grain heat-affected zone(CGHAZ)microstructure of 0.41% Ceqsteel is bainite, while that of 0.31% Ceqsteel is bainite with ferrite and minor pearlite.
文摘The effect of martensite–austenite(M–A)constituents formed in thermo-mechanical controlled process on impact toughness of 20CrNi2MoV steel was investigated.The variation in fraction,size and morphology of M–A constituent and its effect on toughness under different cooling rates were carried out.The result shows that there was no significant change in the fraction of M–A constituent under different cooling rates,but the distribution and size of M–A constituent were greatly influenced by cooling rate,which consequently influenced toughness.The amount of large blocky M–A constituents decreased from 4.7%to 1.7%,while that of elongated M–A constituents increased from 3.8%to 8.6%with the cooling rate increasing from 7 to 26°C/s,and the corresponding impact energy decreased from 132 to 84 J.The deterioration of impact toughness could be related to the increase in the elongated M–A constituents.The elongated M–A constituents existing along the prior austenite grain boundaries in samples of 26°C/s could easily lead to the formation of cleavage crack,which then results in the lower crack initiation energy than that of low cooling rate samples.
基金supported by the National Natural Science Foundation of China under Grant No.51671030.
文摘Experiments were conducted to evaluate the microstructure and tensile properties of a medium carbon Cr-Ni-W-Mo steel processedthermo-mechanical controlled processing(TMCP)with cooling at different conditions in water,oil,air or lime followedlow tempering.Compared to normal heat-treatment processing,TMCP with water-cooling after deformation enhances the yield strength and tensile strength of the steelabout 323 MPa and about 251 MPa,respectively,due to higher dislocation strengthening and grain boundary strengthening.Meanwhile,it increases the elongation by ;about 1.76%attributed to the increase in volume percentage of the retained austenite and the refined laths of tempered martensite.Slowing the cooling rate after deformation during TMCP leads to a decrease in the strength.This results the coupling effectsthe reduction in dislocation density and volume fraction of tempered martensite together with the coarseness in martensite sizes.However,cooling rate decreasing has less influences on ductility becathe improved elongation the increase in the volume fractions of both retained austenite and lower bainite together with dislocation density decreasing is compensatedthe reduced elongation coarsened grains.