In recent years, photosynthetic microalgae regained attention for biodiesel production. For efficient utilization of microalgae, a number of criteria including a strain with high biomass and lipid productivities and e...In recent years, photosynthetic microalgae regained attention for biodiesel production. For efficient utilization of microalgae, a number of criteria including a strain with high biomass and lipid productivities and employment of effective and reliable methods for oil extraction from the obtained biomass should be met. Recently, we have isolated and identified three thermo-resistant green microalgae strains, namely;Scenedesmus sp. ME02, Hindakia tetrachotoma ME03 and Mic-ractinium sp. ME05. In this study, we compared percent lipid content of thermos-tolerant mic-roalgal strains using the following solvent extraction methods: Soxhlet, Bligh and Dyer and Folch methods with or without assisted cell disruption techniques including lyophilization, homogenization, ultrasonication, bead and microwave-assisted. The highest increase in lipid yield was obtained with a combination of lyophilization and ultrasonication techniques together with Soxhlet method: 27% of total dry weight for Micractinium sp. ME05. We conclude that lyophilization and ultrasonication are effective assistance methods for lipid extraction from thermo-resistant microalgae.展开更多
The booming photothermal therapy(PTT)has achieved great progress in non-invasive oncotherapy,and paves a novel way for clinical oncotherapy.Of note,mild temperature PTT(mPTT)of 42–45°C could avoid treatment bott...The booming photothermal therapy(PTT)has achieved great progress in non-invasive oncotherapy,and paves a novel way for clinical oncotherapy.Of note,mild temperature PTT(mPTT)of 42–45°C could avoid treatment bottleneck of the traditional PTT,including nonspecific injury to normal tissues,vasculature and host antitumor immunity.However,cancer cells can resist mPTT via heat shock response and autophagy,thus leading to insufficient mPTT monotherapy to ablate tumor.To overcome the deficient antitumor efficacy caused by thermo-resistance of cancer cells and mono mPTT,synergistic therapies towards cancer cells have been conducted with mPTT.This review summarizes the recent advances in nanomedicine-potentiated mPTT for cancer treatment,including strategies for enhanced single-mode mPTT and mPTT plus synergistic therapies.Moreover,challenges and prospects for clinical translation of nanomedicine-potentiated mPTT are discussed.展开更多
文摘In recent years, photosynthetic microalgae regained attention for biodiesel production. For efficient utilization of microalgae, a number of criteria including a strain with high biomass and lipid productivities and employment of effective and reliable methods for oil extraction from the obtained biomass should be met. Recently, we have isolated and identified three thermo-resistant green microalgae strains, namely;Scenedesmus sp. ME02, Hindakia tetrachotoma ME03 and Mic-ractinium sp. ME05. In this study, we compared percent lipid content of thermos-tolerant mic-roalgal strains using the following solvent extraction methods: Soxhlet, Bligh and Dyer and Folch methods with or without assisted cell disruption techniques including lyophilization, homogenization, ultrasonication, bead and microwave-assisted. The highest increase in lipid yield was obtained with a combination of lyophilization and ultrasonication techniques together with Soxhlet method: 27% of total dry weight for Micractinium sp. ME05. We conclude that lyophilization and ultrasonication are effective assistance methods for lipid extraction from thermo-resistant microalgae.
基金the National Natural Science Foundation of China(82073401,81872819,82073795)supported by Young Talent Support Project of Jiangsu Association for Science and Technology(TJ-2021-002)+1 种基金Development Funds for Priority Academic Programs in Jiangsu Higher Education Institutions-Young Talent Program(1131810010),"Double First-Class"University project(CPU2018GY26).
文摘The booming photothermal therapy(PTT)has achieved great progress in non-invasive oncotherapy,and paves a novel way for clinical oncotherapy.Of note,mild temperature PTT(mPTT)of 42–45°C could avoid treatment bottleneck of the traditional PTT,including nonspecific injury to normal tissues,vasculature and host antitumor immunity.However,cancer cells can resist mPTT via heat shock response and autophagy,thus leading to insufficient mPTT monotherapy to ablate tumor.To overcome the deficient antitumor efficacy caused by thermo-resistance of cancer cells and mono mPTT,synergistic therapies towards cancer cells have been conducted with mPTT.This review summarizes the recent advances in nanomedicine-potentiated mPTT for cancer treatment,including strategies for enhanced single-mode mPTT and mPTT plus synergistic therapies.Moreover,challenges and prospects for clinical translation of nanomedicine-potentiated mPTT are discussed.