Nonlinear impedances of two thermoacoustic stacks with ordered structures (plate-type and pipe-type) and one with a disordered structure (copper mesh) are studied. The linear resistances, nonlinear coefficients an...Nonlinear impedances of two thermoacoustic stacks with ordered structures (plate-type and pipe-type) and one with a disordered structure (copper mesh) are studied. The linear resistances, nonlinear coefficients and effective acoustic masses of the stacks are extracted from the experimental results based on an analogical model of nonlinear impedances of porous materials. The resistance and nonlinear coefficient of the disordered stack are found to be much larger than those of the ordered stacks, which have similar volume porosities. In the ordered stacks, the resistance is only marginally influenced by the length of the stack, while in the disordered stack, the resistance increases significantly with the length. These charac- teristics of the impedances of ordered and disordered stacks are explained with the minor loss theory and the tortuosity of a stack.展开更多
基金supported by the National Basic Research Program of China(Grant No.2012CB921504)the National Natural Science Foundation of China(GrantNos.11374154,10904067,and 11174142)+2 种基金the Ph.D.Programs Foundation of Ministry of Education of China(Grant No.20090091120050)the PriorityAcademic Program Development of Jiangsu Higher Education Institutions,Chinathe Fundamental Research Funds for the Central Universities of Ministryof Education of China(Grant No.1101020402)
文摘Nonlinear impedances of two thermoacoustic stacks with ordered structures (plate-type and pipe-type) and one with a disordered structure (copper mesh) are studied. The linear resistances, nonlinear coefficients and effective acoustic masses of the stacks are extracted from the experimental results based on an analogical model of nonlinear impedances of porous materials. The resistance and nonlinear coefficient of the disordered stack are found to be much larger than those of the ordered stacks, which have similar volume porosities. In the ordered stacks, the resistance is only marginally influenced by the length of the stack, while in the disordered stack, the resistance increases significantly with the length. These charac- teristics of the impedances of ordered and disordered stacks are explained with the minor loss theory and the tortuosity of a stack.