Liquid vaporization under thermodynamic phase non-equilibrium condition at the gas-liquid interface is investigated over a wide range of fluid state typical of many liquid-fueled energy conversion systems. The validit...Liquid vaporization under thermodynamic phase non-equilibrium condition at the gas-liquid interface is investigated over a wide range of fluid state typical of many liquid-fueled energy conversion systems. The validity of the phase-equilibrium assumption commonly used in the existing study of liquid vaporization is examined using molecular dynamics theories. The interfacial mass flow rates on both sides of the liquid surface are compared to the net vaporization rate through an order-of-magnitude analysis.Results indicated that the phase-equilibrium assumption holds valid at relatively high pressures and low temperatures,and for droplets with relatively large initial diameters(for example,larger than 10 μm for vaporizing oxygen droplets in gaseous hydrogen in the pressure range from 10 atm to the oxygen critical state). Droplet vaporization under superheated conditions is also explored using classical binary homogeneous nucleation theory,in conjunction with a real-fluid equation of state. It is found that the bubble nucleation rate is very sensitive to changes in saturation ratio and pressure;it increases by several orders of magnitude when either the saturation ratio or the pressure is slightly increased. The kinetic limit of saturation ratio decreases with increasing pressure,leading to reduced difference between saturation and superheat conditions. As a result,the influence of nonequilibrium conditions on droplet vaporization is lower at a higher pressure.展开更多
The microstructures of a single crystal Ni-base superalloy with [001] orientation were observed by means of TEM. Results showed that the fine γ' particles were precipitated in the γ matrix channels during the t...The microstructures of a single crystal Ni-base superalloy with [001] orientation were observed by means of TEM. Results showed that the fine γ' particles were precipitated in the γ matrix channels during the tensile deformation of the alloy. Thermodynamics analysis indicated that the solubility of elements M(Al,Ta) within the γ matrix may be changed when the alloy was deformed by the external applied stress. The tensile stress reduced the solubility of elements Al and Ta so as to occur the over-saturation and agglomeration of them, which promoted the precipitation of fine γ'-phase in the γ matrix.展开更多
In this work,thermodynamic models for the energetics and kinetics of inhomogeneous gradient materials with microstructure are formulated in the context of continuum thermodynamics and material theory.For simplicity,at...In this work,thermodynamic models for the energetics and kinetics of inhomogeneous gradient materials with microstructure are formulated in the context of continuum thermodynamics and material theory.For simplicity,attention is restricted to isothermal conditions.The materials of interest here are characterized by(1) first- and secondorder gradients of the deformation field and(2) a kinematic microstructure field and its gradient(e.g.,in the sense of director,micromorphic or Cosserat microstructure).Material inhomogeneity takes the form of multiple phases and chemical constituents,modeled here with the help of corresponding phase fields.Invariance requirements together with the dissipation principle result in the reduced model field and constitutive relations.Special cases of these include the wellknown Cahn-Hilliard and Ginzburg-Landau relations.In the last part of the work,initial boundary value problems for this class of materials are formulated with the help of rate variational methods.展开更多
The modified Siemens process,which is the major process of producing polycrystalline silicon through current technologies,is a high temperature,slow,semi-batch process and the product is expensive primarily due to the...The modified Siemens process,which is the major process of producing polycrystalline silicon through current technologies,is a high temperature,slow,semi-batch process and the product is expensive primarily due to the large energy consumption.Therefore,the zinc reduction process,which can produce solar-grade silicon in a cost effective manner,should be redeveloped for these conditions.The SiCl2 generation ratio,which stands for the degree of the side reactions,can be decomposed to SiCl4 and ZnCl2 in gas phase zinc atmosphere in the exit where the temperature is very low.Therefore,the lower SiCl2 generation ratio is profitable with lower power consumption.Based on the thermodynamic data for the related pure substances,the relations of the SiCl2 generation ratio and pressure,temperature and the feed molar ratio(n(Zn)/n(SiCl4) are investigated and the graphs thereof are plotted.And the diagrams of Kpθ-T at standard atmosphere pressure have been plotted to account for the influence of temperature on the SiCl2 generation ratio.Furthermore,the diagram of Kpθ-T at different pressures have also been plotted to give an interpretation of the influence of pressure on the SiCl2 generation ratio.The results show that SiCl2 generation ratio increases with increasing temperature,and the higher pressure and excess gas phase zinc can restrict SiCl2 generation ratio.Finally,suitable operational conditions in the practical process of polycrystalline silicon manufacture by gas phase zinc reduction of SiCl4 have been established with 1200 K,0.2 MPa and the feed molar ratio(n(Zn) /n(SiCl4)) of 4 at the entrance.Under these conditions,SiCl2 generation ratio is very low,which indicates that the side reactions can be restricted and the energy consumption is reasonable.展开更多
SisN4 and SiC phase stability via gas phase reactions among SiO, CO/CO2 and N2 has been calculated based on thermochemical equilibrium. The influences of carbon activity (αC), and the partial pressure of SiO (PSiO), ...SisN4 and SiC phase stability via gas phase reactions among SiO, CO/CO2 and N2 has been calculated based on thermochemical equilibrium. The influences of carbon activity (αC), and the partial pressure of SiO (PSiO), CO (PCO) and N2 (PN2) on the Si3N4-SiC stability have been studied and the related phase diagrams have been constructed. Result shows that the lowering αC and PCO/PSiO ratio and the increasing PN2 greatly elevate the Si3N4-SiC equilibrium temperature. Some previously observed experimental results related to Si3N4 and SiC formation at different temperature from the gas phase reactions have been discussed and some guides for sintering and synthesis Of the Si3N4 materials have been proposed展开更多
In this paper a critical assessment and optimization of the phase diagrams and thermodynamic properties of the PrCl_3-MCl(M=Li,Na)and PrCl_3-MCl_2(M=Mg,Ca,Sr,Ba) binary systems have been per- formed.The assessed and o...In this paper a critical assessment and optimization of the phase diagrams and thermodynamic properties of the PrCl_3-MCl(M=Li,Na)and PrCl_3-MCl_2(M=Mg,Ca,Sr,Ba) binary systems have been per- formed.The assessed and optimized binary phase diagrams and thermodynamic data with self consistency are a better basis for constructing multicomponent phase diagrams.展开更多
Through the preparation of PVDF membranes using various nonsolvent coagulation baths following the phase inversion process, the influence of alcohol-based nonsolvents on the formation and structure of PVDF membranes w...Through the preparation of PVDF membranes using various nonsolvent coagulation baths following the phase inversion process, the influence of alcohol-based nonsolvents on the formation and structure of PVDF membranes were investigated. The light scattering and light transmission measurements were used to characterize the equilibrium phase diagram and the gelation speed, respectively. The locations of the crystallization-induced gelation boundaries for various systems and precipitation processes were explained from the corresponding thermodynamic and kinetic parameters. It was found that the better affinity between alcohol-based nonsolvents and DMAc solvent caused the gelation boundaries further away from the PVDF-DMAc axis with the coagulation bath varying from water, methanol, ethanol to iso-propanol. Due to the lower exchange rate of DMAc and alcohols, the delayed demixing took place for the membrane-forming using alcohols as baths, and the delayed time became longer when the coagulation bath was changed from methanol, ethanol to iso-propanol. The characterization results of membranes indicate that the influence of nonsolvents on the phase diagram and the precipitation process are in agreement with those on the membrane morphology. The better thermodynamic stability and a low exchange diffusion rate of PVDF/DMAc/alcohols favor the liquid-solid phase separation in gelation process, and therefore yield the membranes with a porous upper surface, a particular bottom surface and symmetrical structure.展开更多
The thermodynamic phase stability area diagrams of BCl3-NH3-Si Cl4-H2-Ar system were plotted via Factsage software to predict the kinetic experimental results. The effects of parameters(i e, partial pressure of reacta...The thermodynamic phase stability area diagrams of BCl3-NH3-Si Cl4-H2-Ar system were plotted via Factsage software to predict the kinetic experimental results. The effects of parameters(i e, partial pressure of reactants, deposition temperature and total pressure) on the distribution regions of solid phase products were analyzed based on the diagrams. The results show that:(a) Solid phase products are mainly affected by deposition temperature. The area of BN+Si3N4 phase increases with the temperature rising from 650 to 900 ℃, and decreases with the temperature rising from 900 to 1 200 ℃;(b) When temperature and total pressure are constants, BN+Si3N4 phase exists at a high partial pressure of NH3;(c) The effect of total system pressure is correlated to deposition temperature. The temperature ranging from 700 to 900 ℃ under low total pressure is the optimum condition for the deposition.(d) Appropriate kinetic parameters can be determined based on the results of thermodynamic calculation. Si–B–N coating is obtained via low pressure chemical vapor deposition. The analysis by X-ray photoelectron spectroscopy indicates that B–N and Si–N are the main chemical bonds of the coating.展开更多
Thermodynamic databases are very useful to analyze the complex chemical reactions happening in high temperature material processes. An accurate thermodynamic database based on physically sound thermodynamic models can...Thermodynamic databases are very useful to analyze the complex chemical reactions happening in high temperature material processes. An accurate thermodynamic database based on physically sound thermodynamic models can provide thermodynamic calculations of useful phase diagrams and comprehensive chemical reactions related to refractory corrosion in steelmaking processes. In this study,the FactS age thermodynamic database,one of the most comprehensive thermodynamic databases for oxide systems among other commercial software,is reviewed in particular for the steelmaking refractory research,and several applications to refractory corrosion are presented.展开更多
The experimental phase diagram data of the Ga-As-P,Ga-P-Sb,In-As-P and In-P-Sb ternary systems were critically assessed. A set of self-consistent thermodynamic model parameters were obtained and used to describe the p...The experimental phase diagram data of the Ga-As-P,Ga-P-Sb,In-As-P and In-P-Sb ternary systems were critically assessed. A set of self-consistent thermodynamic model parameters were obtained and used to describe the phase equilibria of these systems. In most cases, the calculated values agree very well with the experimental data.展开更多
The solid–liquid equilibria(SLE)for binary and ternary systems consisting of N-Vinylpyrrolidone(NVP),2-Pyrrolidone(2-P)and water are measured.The phase diagrams of NVP(1)+2-P(2),NVP(1)+water(2),NVP(1)+2-P(2)+1 wt%wat...The solid–liquid equilibria(SLE)for binary and ternary systems consisting of N-Vinylpyrrolidone(NVP),2-Pyrrolidone(2-P)and water are measured.The phase diagrams of NVP(1)+2-P(2),NVP(1)+water(2),NVP(1)+2-P(2)+1 wt%water(3)and NVP(1)+2-P(2)+2 wt%water(3)are identified as simple eutectic type with the eutectic points at 263.75 K(x_(1E)=0.5427),251.65 K(x_(1E)=0.3722),260.25 K(x_(1E)=0.5031)and256.55 K(x_(1E)=0.4684),respectively.The phase diagram of 2-P(1)+water(2)has two eutectic points(x_(1E)=0.1236,T_E=259.15 K and x_(1E)=0.7831,T_E=286.15 K)and one congruent melting point(x_(1C)=0.4997,T_C=303.55 K)because of the generation of a congruently melting addition compound:2-P·H_2O.The ideal solubility and the UNIFAC models were applied to predict the SLE,while the Wilson and NRTL models were employed in correlating the experimental data.The best correlation of the SLE data has been obtained by the Wilson model for the binary system of NVP+2-P.The UNIFAC model gives more satisfactory predictions than the ideal solubility model.展开更多
Most of the lead and zinc deposits in Southwest China, are characterized by mineral zoning, which is especially true for the Huize and Zhaotong deposits. The mineral assemblage zoning is consistent for both horizontal...Most of the lead and zinc deposits in Southwest China, are characterized by mineral zoning, which is especially true for the Huize and Zhaotong deposits. The mineral assemblage zoning is consistent for both horizontal and vertical zoning, from the base(center) of the ore body to the top(outermost), the mineral zones are as follows. I-1: coarse-grained pyrite and a little puce sphalerite;I-2: brown sphalerite, galena, and ferro-dolomite;I-3: galena, sandy beige and pale yellow sphalerite, and calcite;and I-4: fine-grained pyrite, dolomite, and calcite. Among them, sphalerite is the landmark mineral of different zoning. From I-1 to I-3, the color of sphalerite changes from dark to light, its crystalline size changes from coarse to fine, and its structure changes from disseminated to veinlet. This mineral zoning is seen not only on a microscopic scale, but is also clear on a mesoscopic and macroscopic scale. It is caused by the order of the sphalerite and galena precipitation. We studied the metallic minerals and fluid inclusions using a thermodynamic phase diagram method, such as lgfO2–lgfS2, pH–lgfO2, pH–lg[Pb^2+] and pH–lg[HS^-], discussed the constraints on the order of the sphalerite and galena precipitation in the migration and precipitation process of lead and zinc under different pH values, oxygen fugacity, sulfur fugacity, and ionic activity. We also explain the formation mechanism and propose that the main controlling factor of the order of the sphalerite and galena precipitation is sulfur fugacity.展开更多
We have investigated the quasinormal modes (QNMs) of phantom scalar perturbation in a Reissner Nordstr6m (RN) background. We find that the dependence of Q, NMs on the mass of the field for the phantom perturbation...We have investigated the quasinormal modes (QNMs) of phantom scalar perturbation in a Reissner Nordstr6m (RN) background. We find that the dependence of Q, NMs on the mass of the field for the phantom perturbation is totally different from that of usual massive perturbation. However, we obtain the same critical value of the overtone number for an angular quantum number from which the mass will begin to have a reverse effect on the real part of QNM frequencies and the perturbation-independent relation between the Q, NMs and the second order thermodynamic phase transition.展开更多
The lack of experimental data and / or limited experimental information concerning both surface and transport properties of liquid alloys often require the prediction of these quantities. An attempt has been made to l...The lack of experimental data and / or limited experimental information concerning both surface and transport properties of liquid alloys often require the prediction of these quantities. An attempt has been made to link the thermophysical properties of a ternary Cu-Sn-Ti system and its binary Cu-Sn, Cu-Ti and SnoTi subsystems with the bulk through the study of the concentration dependence of various thermodynamic, structural, surface and dynamic properties in the frame of the statistical mechanical theory in conjunction with the quasi-lattice theory (QLT). This formalism provides valuable qualitative insight into mixing processes that occur in molten alloys.展开更多
In this work, ultrathin pure HfO_2 and Al-doped HfO_2films(about 4-nm thick) are prepared by atomic layer deposition and the crystallinities of these films before and after annealing at temperatures ranging from 550...In this work, ultrathin pure HfO_2 and Al-doped HfO_2films(about 4-nm thick) are prepared by atomic layer deposition and the crystallinities of these films before and after annealing at temperatures ranging from 550℃ to 750℃ are analyzed by grazing incidence x-ray diffraction. The as-deposited pure HfO_2 and Al-doped HfO_2 films are both amorphous. After550-℃ annealing, a multiphase consisting of a few orthorhombic, monoclinic and tetragonal phases can be observed in the pure HfO_2 film while the Al-doped HfO_2 film remains amorphous. After annealing at 650℃ and above, a great number of HfO_2 tetragonal phases, a high-temperature phase with higher dielectric constant, can be stabilized in the Al-doped HfO_2 film. As a result, the dielectric constant is enhanced up to about 35. The physical mechanism of the phase transition behavior is discussed from the viewpoint of thermodynamics and kinetics.展开更多
Aiming to identify the validity of fabricating microencapsulated phase change material(PCM) with polymethylmethacrylate(PMMA) by ultraviolet curing emulsion polymerization method using iron(III) chloride as photoiniti...Aiming to identify the validity of fabricating microencapsulated phase change material(PCM) with polymethylmethacrylate(PMMA) by ultraviolet curing emulsion polymerization method using iron(III) chloride as photoinitiator,SA/PMMA microcapsules were prepared and various techniques were employed to determine the ignition mechanism,structural characteristics and thermal properties of the composite.The results shown that the microcapsules containing SA with maximum percentage of 52.20 wt% formed by radical mechanism and only physical interactions existed in the components both in the prepared process and subsequent use.The phase change temperatures and latent heats of the microencapsulated SA were measured as 55.3 °C and 102.1 J·g^(-1) for melting,and 48.8 °C and 102.8 J·g^(-1) for freezing,respectively.Thermal gravimetric analysis revealed that SA/PMMA has good thermal durability in working temperature range.The results of accelerated thermal cycling test are all shown that the SA/PMMA have excellent thermal reliability and chemical stability although they were subjected 1000 melting/freezing cycles.In summary,the comparable thermal storage ability and good thermal reliability facilitated SA/PMMA to be considered as a viable candidate for thermal energy storage.The successful fabrication of SA/PMMA capsules indicates that ferric chloride is a prominent candidate for synthesizing PMMA containing PCM composite.展开更多
Phase diagrams for the CsF-UF4 and CsF-ThF4 systems were modeled in the present work through computational thennodynamics. The associate solution model with various complex species(CsMFs, Cs2MF6 and Cs3MF7; M=Th, U)...Phase diagrams for the CsF-UF4 and CsF-ThF4 systems were modeled in the present work through computational thennodynamics. The associate solution model with various complex species(CsMFs, Cs2MF6 and Cs3MF7; M=Th, U) was used to thermodynamically describe the binary molten salts. A total of ten intermediate phases were treated as stoichiometric compounds with their Gibbs energies modeled according to the Neumann-Kopp rule. All these model parameters were optimized by the least squares procedure until good coincidence was achieved between the calculated results and most of the experimental data. The derived thermodynamic parameters will be merged into the multicomponent CsF-LiF-BeF2-ThF4-UF4 database for analyzing physicochemical behavior of CsF in the fuel salt of the molten salt breeder reactor.展开更多
This paper systematically reports the thermodynamic characteristic and phase evolution of immiscible Cr–Mo binary alloy during mechanical alloying(MA) process. The Cr–35Mo(in at%) powder mixture was milled at 24...This paper systematically reports the thermodynamic characteristic and phase evolution of immiscible Cr–Mo binary alloy during mechanical alloying(MA) process. The Cr–35Mo(in at%) powder mixture was milled at 243 and258 K, respectively, for different time. For comparative study, Cr–15Mo and Cr–62Mo powder mixtures were milled at 243 K for 18 h. Solid solution Cr(Mo) with body-centered cubic(bcc) crystal structure and amorphous Cr(Mo) alloy was obtained during MA process caused by high-energy ball milling. Based on the Miedema's model, the free-energy change for forming either a solid solution or an amorphous in Cr–Mo alloy system is positive but small at a temperature range between 200 and 300 K. The thermodynamical barrier for forming alloy in Cr–Mo system can be overcome when MA occurs at 243 K, and the supersaturated solid solution crystal nuclei with bcc structure form continually, and three supersaturated solid solutions of Cr–62Mo, Cr–35Mo and Cr–15Mo formed. Milling the Cr–35Mo powder mixture at 258 K, the solid solution Cr(Mo) forms firstly, and then the solid solution Cr(Mo) transforms into the amorphous Cr(Mo)alloy with a few of nanocrystallines when milling is prolonged. At higher milling temperature, it is favorable for the formation of the amorphous phase, as indicated by the thermodynamical calculation for immiscible Cr–Mo alloy system.展开更多
We obtain an exact solution for spherically symmetric Letelier AdS black holes immersed in perfect fluid dark matter(PFDM).Considering the cosmological constant as the positive pressure of the system and volume as its...We obtain an exact solution for spherically symmetric Letelier AdS black holes immersed in perfect fluid dark matter(PFDM).Considering the cosmological constant as the positive pressure of the system and volume as its conjugate variable,we analyze the thermodynamics of our black holes in the extended phase space.Owing to the background clouds of strings parameter(a)and the parameter endowed with PFDM(β),we analyze the Hawking temperature,entropy,and specific heat.Furthermore,we investigate the relationship between the photon sphere radius and phase transition for the Letelier AdS black holes immersed in PFDM.Through the analysis,with a particular condition,non-monotonic behaviors are found between the photon sphere radius,impact parameter,PFDM parameter,temperature,and pressure.We can regard the changes in both the photon sphere radius and impact parameter before and after phase transition as the order parameter;their critical exponents near the critical point are equal to the same value,1/2,similar to that in ordinary thermal systems.This indicates that a universal relation of gravity may exist near the critical point for a black hole thermodynamic system.展开更多
As a binary system of BaO-Lu_2O_3-SiO_2 ternary system, Lu_2O_3-SiO_2 system was optimized and calculated by CALPHAD approach based on available phase diagram and relevant thermodynamic data of RE_2O_3-SiO_2(RE=Lu,Y...As a binary system of BaO-Lu_2O_3-SiO_2 ternary system, Lu_2O_3-SiO_2 system was optimized and calculated by CALPHAD approach based on available phase diagram and relevant thermodynamic data of RE_2O_3-SiO_2(RE=Lu,Yb,Y) binary systems as well as our experimental data of Lu_2O_3-SiO_2 system obtained by quenching experiment. The Gibbs free energy of high temperature solution was described by an ionic two-sublattice model as(Lu^(3+))P(O^(2-), SiO_2~0)Q. The calculated phase diagram below 1873 K was in good agreement with experimental data at 1573, 1773 and 1873 K. The calculated Gibbs energies of two intermediate phases Lu_2SiO_5 and Lu_2Si_2O_7, the activity of Lu_2O_3 and SiO_2 and specific heat capacities of intermediate phases agreed well with experimental results of Y_2O_3-SiO_2 system. This tentative study will offer help for the research of single-phase phosphor and related metallurgical slags, refractories, high-temperature superconductivity material systems.展开更多
文摘Liquid vaporization under thermodynamic phase non-equilibrium condition at the gas-liquid interface is investigated over a wide range of fluid state typical of many liquid-fueled energy conversion systems. The validity of the phase-equilibrium assumption commonly used in the existing study of liquid vaporization is examined using molecular dynamics theories. The interfacial mass flow rates on both sides of the liquid surface are compared to the net vaporization rate through an order-of-magnitude analysis.Results indicated that the phase-equilibrium assumption holds valid at relatively high pressures and low temperatures,and for droplets with relatively large initial diameters(for example,larger than 10 μm for vaporizing oxygen droplets in gaseous hydrogen in the pressure range from 10 atm to the oxygen critical state). Droplet vaporization under superheated conditions is also explored using classical binary homogeneous nucleation theory,in conjunction with a real-fluid equation of state. It is found that the bubble nucleation rate is very sensitive to changes in saturation ratio and pressure;it increases by several orders of magnitude when either the saturation ratio or the pressure is slightly increased. The kinetic limit of saturation ratio decreases with increasing pressure,leading to reduced difference between saturation and superheat conditions. As a result,the influence of nonequilibrium conditions on droplet vaporization is lower at a higher pressure.
文摘The microstructures of a single crystal Ni-base superalloy with [001] orientation were observed by means of TEM. Results showed that the fine γ' particles were precipitated in the γ matrix channels during the tensile deformation of the alloy. Thermodynamics analysis indicated that the solubility of elements M(Al,Ta) within the γ matrix may be changed when the alloy was deformed by the external applied stress. The tensile stress reduced the solubility of elements Al and Ta so as to occur the over-saturation and agglomeration of them, which promoted the precipitation of fine γ'-phase in the γ matrix.
基金Financial support of Subproject M03 in the Transregional Collaborative Research Center SFB/TRR 136 by the German Science Foundation(DFG)
文摘In this work,thermodynamic models for the energetics and kinetics of inhomogeneous gradient materials with microstructure are formulated in the context of continuum thermodynamics and material theory.For simplicity,attention is restricted to isothermal conditions.The materials of interest here are characterized by(1) first- and secondorder gradients of the deformation field and(2) a kinematic microstructure field and its gradient(e.g.,in the sense of director,micromorphic or Cosserat microstructure).Material inhomogeneity takes the form of multiple phases and chemical constituents,modeled here with the help of corresponding phase fields.Invariance requirements together with the dissipation principle result in the reduced model field and constitutive relations.Special cases of these include the wellknown Cahn-Hilliard and Ginzburg-Landau relations.In the last part of the work,initial boundary value problems for this class of materials are formulated with the help of rate variational methods.
基金Supported by the Provincial personnel training funds(kksy201352109)the National Natural Science Foundation of China(51374118)
文摘The modified Siemens process,which is the major process of producing polycrystalline silicon through current technologies,is a high temperature,slow,semi-batch process and the product is expensive primarily due to the large energy consumption.Therefore,the zinc reduction process,which can produce solar-grade silicon in a cost effective manner,should be redeveloped for these conditions.The SiCl2 generation ratio,which stands for the degree of the side reactions,can be decomposed to SiCl4 and ZnCl2 in gas phase zinc atmosphere in the exit where the temperature is very low.Therefore,the lower SiCl2 generation ratio is profitable with lower power consumption.Based on the thermodynamic data for the related pure substances,the relations of the SiCl2 generation ratio and pressure,temperature and the feed molar ratio(n(Zn)/n(SiCl4) are investigated and the graphs thereof are plotted.And the diagrams of Kpθ-T at standard atmosphere pressure have been plotted to account for the influence of temperature on the SiCl2 generation ratio.Furthermore,the diagram of Kpθ-T at different pressures have also been plotted to give an interpretation of the influence of pressure on the SiCl2 generation ratio.The results show that SiCl2 generation ratio increases with increasing temperature,and the higher pressure and excess gas phase zinc can restrict SiCl2 generation ratio.Finally,suitable operational conditions in the practical process of polycrystalline silicon manufacture by gas phase zinc reduction of SiCl4 have been established with 1200 K,0.2 MPa and the feed molar ratio(n(Zn) /n(SiCl4)) of 4 at the entrance.Under these conditions,SiCl2 generation ratio is very low,which indicates that the side reactions can be restricted and the energy consumption is reasonable.
文摘SisN4 and SiC phase stability via gas phase reactions among SiO, CO/CO2 and N2 has been calculated based on thermochemical equilibrium. The influences of carbon activity (αC), and the partial pressure of SiO (PSiO), CO (PCO) and N2 (PN2) on the Si3N4-SiC stability have been studied and the related phase diagrams have been constructed. Result shows that the lowering αC and PCO/PSiO ratio and the increasing PN2 greatly elevate the Si3N4-SiC equilibrium temperature. Some previously observed experimental results related to Si3N4 and SiC formation at different temperature from the gas phase reactions have been discussed and some guides for sintering and synthesis Of the Si3N4 materials have been proposed
文摘In this paper a critical assessment and optimization of the phase diagrams and thermodynamic properties of the PrCl_3-MCl(M=Li,Na)and PrCl_3-MCl_2(M=Mg,Ca,Sr,Ba) binary systems have been per- formed.The assessed and optimized binary phase diagrams and thermodynamic data with self consistency are a better basis for constructing multicomponent phase diagrams.
基金This work was support by the National Basic Research Program of China (No. 2003CB615705)the national Natural Science Foundation of China (No. 50433010)
文摘Through the preparation of PVDF membranes using various nonsolvent coagulation baths following the phase inversion process, the influence of alcohol-based nonsolvents on the formation and structure of PVDF membranes were investigated. The light scattering and light transmission measurements were used to characterize the equilibrium phase diagram and the gelation speed, respectively. The locations of the crystallization-induced gelation boundaries for various systems and precipitation processes were explained from the corresponding thermodynamic and kinetic parameters. It was found that the better affinity between alcohol-based nonsolvents and DMAc solvent caused the gelation boundaries further away from the PVDF-DMAc axis with the coagulation bath varying from water, methanol, ethanol to iso-propanol. Due to the lower exchange rate of DMAc and alcohols, the delayed demixing took place for the membrane-forming using alcohols as baths, and the delayed time became longer when the coagulation bath was changed from methanol, ethanol to iso-propanol. The characterization results of membranes indicate that the influence of nonsolvents on the phase diagram and the precipitation process are in agreement with those on the membrane morphology. The better thermodynamic stability and a low exchange diffusion rate of PVDF/DMAc/alcohols favor the liquid-solid phase separation in gelation process, and therefore yield the membranes with a porous upper surface, a particular bottom surface and symmetrical structure.
基金Funded by the National Natural Science Foundation of China(Nos.51002120,51472201)
文摘The thermodynamic phase stability area diagrams of BCl3-NH3-Si Cl4-H2-Ar system were plotted via Factsage software to predict the kinetic experimental results. The effects of parameters(i e, partial pressure of reactants, deposition temperature and total pressure) on the distribution regions of solid phase products were analyzed based on the diagrams. The results show that:(a) Solid phase products are mainly affected by deposition temperature. The area of BN+Si3N4 phase increases with the temperature rising from 650 to 900 ℃, and decreases with the temperature rising from 900 to 1 200 ℃;(b) When temperature and total pressure are constants, BN+Si3N4 phase exists at a high partial pressure of NH3;(c) The effect of total system pressure is correlated to deposition temperature. The temperature ranging from 700 to 900 ℃ under low total pressure is the optimum condition for the deposition.(d) Appropriate kinetic parameters can be determined based on the results of thermodynamic calculation. Si–B–N coating is obtained via low pressure chemical vapor deposition. The analysis by X-ray photoelectron spectroscopy indicates that B–N and Si–N are the main chemical bonds of the coating.
基金Financial supports from Tata Steel Europe,Posco,RIST, Hyundai Steel,Nucor Steel,RTIT,Nippon Steel and Sumitomo Metals Corp. ,JFE Steel,Voestalpine,RHI,and the Natural Sciences and Engineering Research Council of Canada
文摘Thermodynamic databases are very useful to analyze the complex chemical reactions happening in high temperature material processes. An accurate thermodynamic database based on physically sound thermodynamic models can provide thermodynamic calculations of useful phase diagrams and comprehensive chemical reactions related to refractory corrosion in steelmaking processes. In this study,the FactS age thermodynamic database,one of the most comprehensive thermodynamic databases for oxide systems among other commercial software,is reviewed in particular for the steelmaking refractory research,and several applications to refractory corrosion are presented.
文摘The experimental phase diagram data of the Ga-As-P,Ga-P-Sb,In-As-P and In-P-Sb ternary systems were critically assessed. A set of self-consistent thermodynamic model parameters were obtained and used to describe the phase equilibria of these systems. In most cases, the calculated values agree very well with the experimental data.
文摘The solid–liquid equilibria(SLE)for binary and ternary systems consisting of N-Vinylpyrrolidone(NVP),2-Pyrrolidone(2-P)and water are measured.The phase diagrams of NVP(1)+2-P(2),NVP(1)+water(2),NVP(1)+2-P(2)+1 wt%water(3)and NVP(1)+2-P(2)+2 wt%water(3)are identified as simple eutectic type with the eutectic points at 263.75 K(x_(1E)=0.5427),251.65 K(x_(1E)=0.3722),260.25 K(x_(1E)=0.5031)and256.55 K(x_(1E)=0.4684),respectively.The phase diagram of 2-P(1)+water(2)has two eutectic points(x_(1E)=0.1236,T_E=259.15 K and x_(1E)=0.7831,T_E=286.15 K)and one congruent melting point(x_(1C)=0.4997,T_C=303.55 K)because of the generation of a congruently melting addition compound:2-P·H_2O.The ideal solubility and the UNIFAC models were applied to predict the SLE,while the Wilson and NRTL models were employed in correlating the experimental data.The best correlation of the SLE data has been obtained by the Wilson model for the binary system of NVP+2-P.The UNIFAC model gives more satisfactory predictions than the ideal solubility model.
基金Projects(41572060,41802089,U1133602)supported by the National Natural Science Foundation of ChinaProject(2017M610614)supported by the Postdoctoral Science Foundation,ChinaProjects(2008,2012)supported by the YM Lab [2011] and Innovation Team of Yunnan Province and KMUST,China
文摘Most of the lead and zinc deposits in Southwest China, are characterized by mineral zoning, which is especially true for the Huize and Zhaotong deposits. The mineral assemblage zoning is consistent for both horizontal and vertical zoning, from the base(center) of the ore body to the top(outermost), the mineral zones are as follows. I-1: coarse-grained pyrite and a little puce sphalerite;I-2: brown sphalerite, galena, and ferro-dolomite;I-3: galena, sandy beige and pale yellow sphalerite, and calcite;and I-4: fine-grained pyrite, dolomite, and calcite. Among them, sphalerite is the landmark mineral of different zoning. From I-1 to I-3, the color of sphalerite changes from dark to light, its crystalline size changes from coarse to fine, and its structure changes from disseminated to veinlet. This mineral zoning is seen not only on a microscopic scale, but is also clear on a mesoscopic and macroscopic scale. It is caused by the order of the sphalerite and galena precipitation. We studied the metallic minerals and fluid inclusions using a thermodynamic phase diagram method, such as lgfO2–lgfS2, pH–lgfO2, pH–lg[Pb^2+] and pH–lg[HS^-], discussed the constraints on the order of the sphalerite and galena precipitation in the migration and precipitation process of lead and zinc under different pH values, oxygen fugacity, sulfur fugacity, and ionic activity. We also explain the formation mechanism and propose that the main controlling factor of the order of the sphalerite and galena precipitation is sulfur fugacity.
基金Supported by the National Natural Science Foundation of China under Grant No.10905020the China Postdoctoral Science Foundation under Grant Nos.201003245 and 20090460592
文摘We have investigated the quasinormal modes (QNMs) of phantom scalar perturbation in a Reissner Nordstr6m (RN) background. We find that the dependence of Q, NMs on the mass of the field for the phantom perturbation is totally different from that of usual massive perturbation. However, we obtain the same critical value of the overtone number for an angular quantum number from which the mass will begin to have a reverse effect on the real part of QNM frequencies and the perturbation-independent relation between the Q, NMs and the second order thermodynamic phase transition.
基金This work was financially supported by THERMOLAB - ESA MAP PROJECT, Contract No. AO-99-022. A part of this work was performed in the framework of the E.C. action COST 531 project: "Lead-free solder materials".
文摘The lack of experimental data and / or limited experimental information concerning both surface and transport properties of liquid alloys often require the prediction of these quantities. An attempt has been made to link the thermophysical properties of a ternary Cu-Sn-Ti system and its binary Cu-Sn, Cu-Ti and SnoTi subsystems with the bulk through the study of the concentration dependence of various thermodynamic, structural, surface and dynamic properties in the frame of the statistical mechanical theory in conjunction with the quasi-lattice theory (QLT). This formalism provides valuable qualitative insight into mixing processes that occur in molten alloys.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2015AA016501)the National Natural Science Foundation of China(Grant Nos.61574168 and 61504163)
文摘In this work, ultrathin pure HfO_2 and Al-doped HfO_2films(about 4-nm thick) are prepared by atomic layer deposition and the crystallinities of these films before and after annealing at temperatures ranging from 550℃ to 750℃ are analyzed by grazing incidence x-ray diffraction. The as-deposited pure HfO_2 and Al-doped HfO_2 films are both amorphous. After550-℃ annealing, a multiphase consisting of a few orthorhombic, monoclinic and tetragonal phases can be observed in the pure HfO_2 film while the Al-doped HfO_2 film remains amorphous. After annealing at 650℃ and above, a great number of HfO_2 tetragonal phases, a high-temperature phase with higher dielectric constant, can be stabilized in the Al-doped HfO_2 film. As a result, the dielectric constant is enhanced up to about 35. The physical mechanism of the phase transition behavior is discussed from the viewpoint of thermodynamics and kinetics.
基金Supported by the National Natural Science Foundation of China(51562023)the Natural Science Foundation of Gansu Provence(145RJZA185)the National science and technology support project(2014BAA01B01)
文摘Aiming to identify the validity of fabricating microencapsulated phase change material(PCM) with polymethylmethacrylate(PMMA) by ultraviolet curing emulsion polymerization method using iron(III) chloride as photoinitiator,SA/PMMA microcapsules were prepared and various techniques were employed to determine the ignition mechanism,structural characteristics and thermal properties of the composite.The results shown that the microcapsules containing SA with maximum percentage of 52.20 wt% formed by radical mechanism and only physical interactions existed in the components both in the prepared process and subsequent use.The phase change temperatures and latent heats of the microencapsulated SA were measured as 55.3 °C and 102.1 J·g^(-1) for melting,and 48.8 °C and 102.8 J·g^(-1) for freezing,respectively.Thermal gravimetric analysis revealed that SA/PMMA has good thermal durability in working temperature range.The results of accelerated thermal cycling test are all shown that the SA/PMMA have excellent thermal reliability and chemical stability although they were subjected 1000 melting/freezing cycles.In summary,the comparable thermal storage ability and good thermal reliability facilitated SA/PMMA to be considered as a viable candidate for thermal energy storage.The successful fabrication of SA/PMMA capsules indicates that ferric chloride is a prominent candidate for synthesizing PMMA containing PCM composite.
基金Supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XD02002400) and the National Natural Science Foundation of China(No.21473234).
文摘Phase diagrams for the CsF-UF4 and CsF-ThF4 systems were modeled in the present work through computational thennodynamics. The associate solution model with various complex species(CsMFs, Cs2MF6 and Cs3MF7; M=Th, U) was used to thermodynamically describe the binary molten salts. A total of ten intermediate phases were treated as stoichiometric compounds with their Gibbs energies modeled according to the Neumann-Kopp rule. All these model parameters were optimized by the least squares procedure until good coincidence was achieved between the calculated results and most of the experimental data. The derived thermodynamic parameters will be merged into the multicomponent CsF-LiF-BeF2-ThF4-UF4 database for analyzing physicochemical behavior of CsF in the fuel salt of the molten salt breeder reactor.
基金National Natural Science Foundation of China (Nos. 51271143 and 51302247)
文摘This paper systematically reports the thermodynamic characteristic and phase evolution of immiscible Cr–Mo binary alloy during mechanical alloying(MA) process. The Cr–35Mo(in at%) powder mixture was milled at 243 and258 K, respectively, for different time. For comparative study, Cr–15Mo and Cr–62Mo powder mixtures were milled at 243 K for 18 h. Solid solution Cr(Mo) with body-centered cubic(bcc) crystal structure and amorphous Cr(Mo) alloy was obtained during MA process caused by high-energy ball milling. Based on the Miedema's model, the free-energy change for forming either a solid solution or an amorphous in Cr–Mo alloy system is positive but small at a temperature range between 200 and 300 K. The thermodynamical barrier for forming alloy in Cr–Mo system can be overcome when MA occurs at 243 K, and the supersaturated solid solution crystal nuclei with bcc structure form continually, and three supersaturated solid solutions of Cr–62Mo, Cr–35Mo and Cr–15Mo formed. Milling the Cr–35Mo powder mixture at 258 K, the solid solution Cr(Mo) forms firstly, and then the solid solution Cr(Mo) transforms into the amorphous Cr(Mo)alloy with a few of nanocrystallines when milling is prolonged. At higher milling temperature, it is favorable for the formation of the amorphous phase, as indicated by the thermodynamical calculation for immiscible Cr–Mo alloy system.
基金Supported by the National Natural Science Foundation of China(11875151,12347177,12247101)the 111 Project under(B20063)the Lanzhou City's Scientific Research Funding Subsidy to Lanzhou University。
文摘We obtain an exact solution for spherically symmetric Letelier AdS black holes immersed in perfect fluid dark matter(PFDM).Considering the cosmological constant as the positive pressure of the system and volume as its conjugate variable,we analyze the thermodynamics of our black holes in the extended phase space.Owing to the background clouds of strings parameter(a)and the parameter endowed with PFDM(β),we analyze the Hawking temperature,entropy,and specific heat.Furthermore,we investigate the relationship between the photon sphere radius and phase transition for the Letelier AdS black holes immersed in PFDM.Through the analysis,with a particular condition,non-monotonic behaviors are found between the photon sphere radius,impact parameter,PFDM parameter,temperature,and pressure.We can regard the changes in both the photon sphere radius and impact parameter before and after phase transition as the order parameter;their critical exponents near the critical point are equal to the same value,1/2,similar to that in ordinary thermal systems.This indicates that a universal relation of gravity may exist near the critical point for a black hole thermodynamic system.
基金supported by the National Natural Science Foundation of China(51304086)the Science and Technology Landing Plan for Colleges of Jiangxi Province(KJLD14045)+1 种基金Foundation of Science and Technology Pillar Program in Industrial Field of Jiangxi Province(20123BBE50075)the Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technology
文摘As a binary system of BaO-Lu_2O_3-SiO_2 ternary system, Lu_2O_3-SiO_2 system was optimized and calculated by CALPHAD approach based on available phase diagram and relevant thermodynamic data of RE_2O_3-SiO_2(RE=Lu,Yb,Y) binary systems as well as our experimental data of Lu_2O_3-SiO_2 system obtained by quenching experiment. The Gibbs free energy of high temperature solution was described by an ionic two-sublattice model as(Lu^(3+))P(O^(2-), SiO_2~0)Q. The calculated phase diagram below 1873 K was in good agreement with experimental data at 1573, 1773 and 1873 K. The calculated Gibbs energies of two intermediate phases Lu_2SiO_5 and Lu_2Si_2O_7, the activity of Lu_2O_3 and SiO_2 and specific heat capacities of intermediate phases agreed well with experimental results of Y_2O_3-SiO_2 system. This tentative study will offer help for the research of single-phase phosphor and related metallurgical slags, refractories, high-temperature superconductivity material systems.