In this paper, the volumetric properties of pure and mixture of ionic liquids are predicted using the developed statistical mechanical equation of state in different temperatures, pressures and mole fractions. The tem...In this paper, the volumetric properties of pure and mixture of ionic liquids are predicted using the developed statistical mechanical equation of state in different temperatures, pressures and mole fractions. The temperature dependent parameters of the equation of state have been calculated using corresponding state correlation based on only the density at 298.15 K as scaling constants. The obtained mean of deviations of modified equation of state for density of all pure ionic liquids for 1662 data points was 0.25%. In addition, the performance of the artificial neural network(ANN) with principle component analysis(PCA) based on back propagation training with28 neurons in hidden layer for predicting of behavior of binary mixtures of ionic liquids was investigated. The AADs of a collection of 568 data points for all binary systems using the EOS and the ANN at various temperatures and mole fractions are 1.03% and 0.68%, respectively. Moreover, the excess molar volume of all binary mixtures is predicted using obtained densities of EOS and ANN, and the results show that these properties have good agreement with literature.展开更多
文摘In this paper, the volumetric properties of pure and mixture of ionic liquids are predicted using the developed statistical mechanical equation of state in different temperatures, pressures and mole fractions. The temperature dependent parameters of the equation of state have been calculated using corresponding state correlation based on only the density at 298.15 K as scaling constants. The obtained mean of deviations of modified equation of state for density of all pure ionic liquids for 1662 data points was 0.25%. In addition, the performance of the artificial neural network(ANN) with principle component analysis(PCA) based on back propagation training with28 neurons in hidden layer for predicting of behavior of binary mixtures of ionic liquids was investigated. The AADs of a collection of 568 data points for all binary systems using the EOS and the ANN at various temperatures and mole fractions are 1.03% and 0.68%, respectively. Moreover, the excess molar volume of all binary mixtures is predicted using obtained densities of EOS and ANN, and the results show that these properties have good agreement with literature.