Sulfide nanocrystals and their composites have shown great potential in the thermoelectric(TE)field due to their extremely low thermal conductivity.Recently a solid and hollow metastable Au2S nanocrystalline has been ...Sulfide nanocrystals and their composites have shown great potential in the thermoelectric(TE)field due to their extremely low thermal conductivity.Recently a solid and hollow metastable Au2S nanocrystalline has been successfully synthesized.Herein,we study the TE properties of this bulk Au2S by first-principles calculations and semiclassical Boltzmann transport theory,which provides the basis for its further experimental studies.Our results indicate that the highly twofold degeneracy of the bands appears at theΓpoint in the Brillouin zone,resulting in a high Seebeck coefficient.Besides,Au2S exhibits an ultra-low lattice thermal conductivity(~0.88 W·m^-1·K^-1 at 700 K).At 700 K,the thermoelectric figure of merit of the optimal p-type doping is close to 1.76,which is higher than 0.8 of ZrSb at 700 K and 1.4 of PtTe at 750 K.Our work clearly demonstrates the advantages of Au2S as a TE material and would greatly inspire further experimental studies and verifications.展开更多
This paper mainly focuses on the influence of three kinds of media: air, air-10%PA (Nylon) and air-10% POM (polyoxymethylene) on low-voltage circuit breaker arcs. A threedimensional (3-D) model of arc motioa un...This paper mainly focuses on the influence of three kinds of media: air, air-10%PA (Nylon) and air-10% POM (polyoxymethylene) on low-voltage circuit breaker arcs. A threedimensional (3-D) model of arc motioa under the effect of external magnetic field is built based on magnetohydrodynamics (MHD) equations. By adopting the commercial computational fluid dynamics (CFD) package based on the control-volume method, the above MHD equations are solved. For the media of air-10%PA and air-10%POM, the distributions of stationary temperature and electrical potential and the transient motion processes are compared with those of air arc. The research shows that both air-10%PA and air -10% POM can cool the arc plasma and the former is more effective. Both of them can increase the stationary voltage as well. Moreover, the presence of the two mixtures can accelerate the arc motion toward the quenching area and ensures the arc quenched in time.展开更多
基金the National Natural Science Foundation of China(Grant Nos.11504312,11775102,and 11805088)the National Basic Research Program of China(Grant No.2015CB921103)+2 种基金China Postdoctoral Science Foundation(Grant No.2018M641477)Guangdong Provincial Department of Science and Technology,China(Grant No.2018A0303100013)the Fundamental Research Funds for the Central Universities,China(Lanzhou University,Grant No.lzujbky-2018-19).
文摘Sulfide nanocrystals and their composites have shown great potential in the thermoelectric(TE)field due to their extremely low thermal conductivity.Recently a solid and hollow metastable Au2S nanocrystalline has been successfully synthesized.Herein,we study the TE properties of this bulk Au2S by first-principles calculations and semiclassical Boltzmann transport theory,which provides the basis for its further experimental studies.Our results indicate that the highly twofold degeneracy of the bands appears at theΓpoint in the Brillouin zone,resulting in a high Seebeck coefficient.Besides,Au2S exhibits an ultra-low lattice thermal conductivity(~0.88 W·m^-1·K^-1 at 700 K).At 700 K,the thermoelectric figure of merit of the optimal p-type doping is close to 1.76,which is higher than 0.8 of ZrSb at 700 K and 1.4 of PtTe at 750 K.Our work clearly demonstrates the advantages of Au2S as a TE material and would greatly inspire further experimental studies and verifications.
基金supported by National Natural Science Foundation of China(No.50477025 and No.50537050)
文摘This paper mainly focuses on the influence of three kinds of media: air, air-10%PA (Nylon) and air-10% POM (polyoxymethylene) on low-voltage circuit breaker arcs. A threedimensional (3-D) model of arc motioa under the effect of external magnetic field is built based on magnetohydrodynamics (MHD) equations. By adopting the commercial computational fluid dynamics (CFD) package based on the control-volume method, the above MHD equations are solved. For the media of air-10%PA and air-10%POM, the distributions of stationary temperature and electrical potential and the transient motion processes are compared with those of air arc. The research shows that both air-10%PA and air -10% POM can cool the arc plasma and the former is more effective. Both of them can increase the stationary voltage as well. Moreover, the presence of the two mixtures can accelerate the arc motion toward the quenching area and ensures the arc quenched in time.