期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Reaction mechanism between“memory effect”and induction time of gas hydrate formation 被引量:1
1
作者 孙登林 吴强 张保勇 《Journal of Coal Science & Engineering(China)》 2008年第2期280-282,共3页
Abstract Using visual experimental apparatus, one system (T40, 1×10^-3 mol/L, nonadded with coal) and another system (T40, 2×10^-3 mol/L, added with coal) were experimented with for three times and two t... Abstract Using visual experimental apparatus, one system (T40, 1×10^-3 mol/L, nonadded with coal) and another system (T40, 2×10^-3 mol/L, added with coal) were experimented with for three times and two times, respectively. Five groups of P-T experimental parameters were obtained using the data logger system and analyzed combined with the video information of the experiments. Major conclustions show that the induction time is shortened by 10-20 times in the experimental system containing residual pentahedral ring structures; "memory effect" can accelerate the dynamic progress and improve the thermodynamic conditions of gas hydrate formation. 展开更多
关键词 memory effect induction time thermodynamic condition gas hydrate
下载PDF
Quantify Urbanization-Induced Precipitation and Runoff Anomalies over the Qinhuai River Basin of China: Sensitivity Experiments with WRF-Hydro
2
作者 Jie WANG Shiguang MIAO Fei CHEN 《Journal of Meteorological Research》 SCIE CSCD 2024年第5期999-1020,共22页
Urbanization-related precipitation and surface runoff changes have been widely investigated,but few studies have directly quantified these changes and their link to urbanization in the hydrological cycle.A two-way dyn... Urbanization-related precipitation and surface runoff changes have been widely investigated,but few studies have directly quantified these changes and their link to urbanization in the hydrological cycle.A two-way dynamically coupled atmospheric–hydrological modeling system,Weather Research and Forecasting(WRF)-Hydro,has been applied in this study to perform the quantification.The offline WRF-Hydro was first calibrated and validated for several flooding events against gauge observed streamflow data,with the Nash–Sutcliffe efficiency reaching 0.9.Compared to the WRF model,WRF-Hydro resolves more detailed rainfall pattern features and reproduces the gauge rainfall with a correlation coefficient of 0.8.Then,the impact of urbanization on hydrometeorological processes was investigated with coupled WRF-Hydro sensitivity simulations over the Qinhuai River basin of China during 2 June–31 July 2015.The results indicate that urbanization enhances regional precipitation,resulting in an indirect increase in surface runoff,overland flow,and streamflow by 16.7,93.5,and 111.2 mm,respectively;however,the impervious area results in higher surface runoff,overland flow,and streamflow.Moreover,changes in main hydrometeorological processes further impact the atmospheric–terrestrial water budget,resulting in a decrease in terrestrial water storage and an increase(a decrease)in precipitable water storage in the middle(lower)parts of the lower troposphere.These changes are likely associated with the warmer urban environment than rural areas.Increased water vapor and strengthened convective conditions in the middle part of the lower troposphere due to urban warming are advantageous to the formation of precipitation in urban areas,which in turn increases surface runoff,thereby facilitating the water cycle and altering the atmospheric–terrestrial water budget. 展开更多
关键词 URBANIZATION atmospheric-terrestrial water budget coupled Weather Research and Forecasting(WRF)-Hydro model thermodynamic condition
原文传递
Gas hydrate formation in fine sand 被引量:10
3
作者 ZANG XiaoYa LIANG DeQing WU NengYou 《Science China Earth Sciences》 SCIE EI CAS 2013年第4期549-556,共8页
Gas hydrate formation from two types of dissolved gas (methane and mixed gas) was studied under varying thermodynamic conditions in a novel apparatus containing two different natural media from the South China Sea. Th... Gas hydrate formation from two types of dissolved gas (methane and mixed gas) was studied under varying thermodynamic conditions in a novel apparatus containing two different natural media from the South China Sea. The testing media consisted of silica sand particles with diameters of 150-250 μm and 250-380 μm. Hydrate was formed (as in nature) in salt water that occupies the interstitial space of the partially water-saturated silica sand bed. The experiments demonstrate that the rate of hydrate formation is a function of particle diameter, gas source, water salinity, and thermodynamic conditions. The initiation time of hydrate formation was very short and pressure decreased rapidly in the initial stage. The process of mixed gas hydrate formation can be divided into three stages for each type of sediment. Sand particle diameter and water salinity also can influence the formation process of hydrate. The conversion rate of water to hydrate was different under varying thermodynamic conditions, although the formation processes were similar. The conversion rate of methane hydrate in the 250-380 μm sediment was greater than that in the 150-250μm sediment. However, the sediment grain size has no significant influence on the conversion rate of mixed gas hydrate. 展开更多
关键词 formation kinetics water conversion rate natural porous media thermodynamic condition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部