The axisymmetric thermoelastic problem of a uniformly heated, functionally graded isotropic hollow cylinder is considered. An analytical form of solution is proposed. For the case when the Young's modulus and ther...The axisymmetric thermoelastic problem of a uniformly heated, functionally graded isotropic hollow cylinder is considered. An analytical form of solution is proposed. For the case when the Young's modulus and thermal expansion coefficient have a power\|law dependence on the radial coordinate, explicit exact solution is obtained. For the degenerated case, i.e. when the cylinder is homogeneous and isotropic, no stresses will occur provided it is subjected to a uniform temperature. Numerical results are finally given and some important inclusions are obtained.展开更多
A finite element-based thermoelastic anisotropic stress model for hexagonal silicon carbide polytype is developed for the calculation of thermal stresses in SiC crystals grown by the physical vapor transport method. T...A finite element-based thermoelastic anisotropic stress model for hexagonal silicon carbide polytype is developed for the calculation of thermal stresses in SiC crystals grown by the physical vapor transport method. The composite structure of the growing SiC crystal and graphite lid is considered in the model. The thermal expansion match between the crucible lid and SiC crystal is studied for the first time. The influence of thermal stress on the dislocation density and crystal quality is discussed.展开更多
This paper presents an analytical solution for the thermoelastic stress in a typical in-plane's thin-film micro- thermoelectric cooling device under different operating con- ditions. The distributions of the permissi...This paper presents an analytical solution for the thermoelastic stress in a typical in-plane's thin-film micro- thermoelectric cooling device under different operating con- ditions. The distributions of the permissible temperature fields in multilayered thin-films are analytically obtained, and the characteristics, including maximum temperature dif- ference and maximum refrigerating output of the thermo- electric device, are discussed for two operating conditions. Analytical expressions of the thermoelastic stresses in the layered thermoelectric thin-films induced by the tempera- ture difference are formulated based on the theory of mul- tilayer system. The results demonstrate that, the geometric dimension is a significant factor which remarkably affects the thermoelastic stresses. The stress distributions in layers of semiconductor thermoelements, insulating and support- ing membrane show distinctly different features. The present work may profitably guide the optimization design of high- efficiency micro-thermoelectric cooling devices.展开更多
Stresses, particularly those at geometric discontinuities, influence the structural integrity of engineering components. Motivated by the prevalence of complicated-shaped perforated components, the objective of this p...Stresses, particularly those at geometric discontinuities, influence the structural integrity of engineering components. Motivated by the prevalence of complicated-shaped perforated components, the objective of this paper is to demonstrate the ability to stress analyze loaded finite members containing asymmetrical, irregularly-shaped cutouts. Recognizing the difficulties in obtaining purely theoretical or numerical solutions for these situations, the paper presents an expeditious means of experimentally stress analyzing such structures. Processing the load-induced temperature information with a series representation of a stress function provides the independent stress components reliably full-field, including on the edge of a hole. The stresses satisfy equilibrium and strains satisfy compatibility. In addition to being able to stress analyze complicated shapes using real, rather than complex variables, the technique is significant in which it smooths the recorded thermal information, is widely applicable, and requires neither differentiating the measured data nor knowing the elastic properties or external boundary conditions. The latter is extremely important since the external loading is often unknown in practice. That the approach provides the independent stresses is also significant since fatigue analyses and strength criteria typically necessitate knowing the individual components of stress. Present results are supported by those from a finite element analysis, strain gage measurements and load equilibrium.展开更多
Based on a comprehensive review of domestic and foreign literature, this article discusses the technical difficulties and development status of enhanced geothermal system(EGS) concerning the thermal energy extraction ...Based on a comprehensive review of domestic and foreign literature, this article discusses the technical difficulties and development status of enhanced geothermal system(EGS) concerning the thermal energy extraction of deep hot dry rock(HDR) reservoirs and proposes suggestions for the research focus of numerical simulation of HDR reservoir stimulation. Additionally, it summarizes the existing methods and mainstream working fluids for HDR reservoir stimulation. The article emphasizes the significance of factors such as well location, production well depth, artificial fracture orientation, and complexity in optimizing the thermal production efficiency of the EGS. Furthermore, this article delves into a detailed discussion on the influence of fracture spacing, fracture permeability,fracture length, fluid injection rate, and injected fluid temperature on the performance of the EGS. In light of the thermo-hydro-mechanical coupling challenges associated with high-temperature reservoirs, it is suggested that future research efforts should focus on investigating the impact of thermo-induced stresses on the stability of the artificial fracture network within the EGS during long-term(>30 years) circulation of hot and cold fluids.展开更多
In this paper, thermoelastic problem of onedimensional copper rod under thermal shock is simulated using molecular dynamics method by adopting embedded atom method potential. The rod is on axis x, the left outermost s...In this paper, thermoelastic problem of onedimensional copper rod under thermal shock is simulated using molecular dynamics method by adopting embedded atom method potential. The rod is on axis x, the left outermost surface of which is traction free and the right outermost surface is fixed. Free boundary condition is imposed on the outermost surfaces in direction y and z. The left and right ends of the rod are subjected to hot and cold baths, respectively. Temperature, displacement and stress distributions are obtained along the rod at different moments, which are shown to be limited in the mobile region, indicating that the heat propagation speed is limited rather than infinite. This is consistent with the prediction given by generalized thermoelastic theory. From simulation results we find that the speed of heat conduction is the same as the speed of thermal stress wave. In the present paper, the simulations are conducted using the large-scale atomic/molecular massively parallel simulator and completed visualization software.展开更多
The wave propagation in an infinite, homogeneous, transversely isotropic solid cylin- der of arbitrary cross-section is studied using Fourier expansion collocation method, within the frame work of linearized, three-di...The wave propagation in an infinite, homogeneous, transversely isotropic solid cylin- der of arbitrary cross-section is studied using Fourier expansion collocation method, within the frame work of linearized, three-dimensional theory of thermoelasticity. Three displacement po- tential functions are introduced, to uncouple the equations of motion and the heat conduction. The frequency equations are obtained for longitudinal and flexural (symmetric and antisymmet- ric) modes of vibration and are studied numerically for elliptic and parabolic cross-sectional zinc cylinders. The computed non-dimensional wave numbers are presented in the form of dispersion curves.展开更多
文摘The axisymmetric thermoelastic problem of a uniformly heated, functionally graded isotropic hollow cylinder is considered. An analytical form of solution is proposed. For the case when the Young's modulus and thermal expansion coefficient have a power\|law dependence on the radial coordinate, explicit exact solution is obtained. For the degenerated case, i.e. when the cylinder is homogeneous and isotropic, no stresses will occur provided it is subjected to a uniform temperature. Numerical results are finally given and some important inclusions are obtained.
基金The project supported by the National Natural Science Foundation of China (10472126)the Knowledge Innovation Program of Chinese Academy of Sciences
文摘A finite element-based thermoelastic anisotropic stress model for hexagonal silicon carbide polytype is developed for the calculation of thermal stresses in SiC crystals grown by the physical vapor transport method. The composite structure of the growing SiC crystal and graphite lid is considered in the model. The thermal expansion match between the crucible lid and SiC crystal is studied for the first time. The influence of thermal stress on the dislocation density and crystal quality is discussed.
基金supported by the National Basic Research Program of China(2007CB607506)the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China(111005)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(11121202)
文摘This paper presents an analytical solution for the thermoelastic stress in a typical in-plane's thin-film micro- thermoelectric cooling device under different operating con- ditions. The distributions of the permissible temperature fields in multilayered thin-films are analytically obtained, and the characteristics, including maximum temperature dif- ference and maximum refrigerating output of the thermo- electric device, are discussed for two operating conditions. Analytical expressions of the thermoelastic stresses in the layered thermoelectric thin-films induced by the tempera- ture difference are formulated based on the theory of mul- tilayer system. The results demonstrate that, the geometric dimension is a significant factor which remarkably affects the thermoelastic stresses. The stress distributions in layers of semiconductor thermoelements, insulating and support- ing membrane show distinctly different features. The present work may profitably guide the optimization design of high- efficiency micro-thermoelectric cooling devices.
文摘Stresses, particularly those at geometric discontinuities, influence the structural integrity of engineering components. Motivated by the prevalence of complicated-shaped perforated components, the objective of this paper is to demonstrate the ability to stress analyze loaded finite members containing asymmetrical, irregularly-shaped cutouts. Recognizing the difficulties in obtaining purely theoretical or numerical solutions for these situations, the paper presents an expeditious means of experimentally stress analyzing such structures. Processing the load-induced temperature information with a series representation of a stress function provides the independent stress components reliably full-field, including on the edge of a hole. The stresses satisfy equilibrium and strains satisfy compatibility. In addition to being able to stress analyze complicated shapes using real, rather than complex variables, the technique is significant in which it smooths the recorded thermal information, is widely applicable, and requires neither differentiating the measured data nor knowing the elastic properties or external boundary conditions. The latter is extremely important since the external loading is often unknown in practice. That the approach provides the independent stresses is also significant since fatigue analyses and strength criteria typically necessitate knowing the individual components of stress. Present results are supported by those from a finite element analysis, strain gage measurements and load equilibrium.
基金Research Foundation of the Department of Natural Resources of Hunan ProvinceGrant/Award Number:20230101DZ+7 种基金Natural Science Foundation of Hunan ProvinceGrant/Award Number:2023JJ20062National Key Research and Development Program of ChinaGrant/Award Number:2022YFC2903704National Natural Science Foundation of ChinaGrant/Award Number:52104112Science and Technology Innovation Program of Hunan Province of ChinaGrant/Award Number:2023RC3051。
文摘Based on a comprehensive review of domestic and foreign literature, this article discusses the technical difficulties and development status of enhanced geothermal system(EGS) concerning the thermal energy extraction of deep hot dry rock(HDR) reservoirs and proposes suggestions for the research focus of numerical simulation of HDR reservoir stimulation. Additionally, it summarizes the existing methods and mainstream working fluids for HDR reservoir stimulation. The article emphasizes the significance of factors such as well location, production well depth, artificial fracture orientation, and complexity in optimizing the thermal production efficiency of the EGS. Furthermore, this article delves into a detailed discussion on the influence of fracture spacing, fracture permeability,fracture length, fluid injection rate, and injected fluid temperature on the performance of the EGS. In light of the thermo-hydro-mechanical coupling challenges associated with high-temperature reservoirs, it is suggested that future research efforts should focus on investigating the impact of thermo-induced stresses on the stability of the artificial fracture network within the EGS during long-term(>30 years) circulation of hot and cold fluids.
基金supported by the National Natural Science Foundation of China (10872158)
文摘In this paper, thermoelastic problem of onedimensional copper rod under thermal shock is simulated using molecular dynamics method by adopting embedded atom method potential. The rod is on axis x, the left outermost surface of which is traction free and the right outermost surface is fixed. Free boundary condition is imposed on the outermost surfaces in direction y and z. The left and right ends of the rod are subjected to hot and cold baths, respectively. Temperature, displacement and stress distributions are obtained along the rod at different moments, which are shown to be limited in the mobile region, indicating that the heat propagation speed is limited rather than infinite. This is consistent with the prediction given by generalized thermoelastic theory. From simulation results we find that the speed of heat conduction is the same as the speed of thermal stress wave. In the present paper, the simulations are conducted using the large-scale atomic/molecular massively parallel simulator and completed visualization software.
文摘The wave propagation in an infinite, homogeneous, transversely isotropic solid cylin- der of arbitrary cross-section is studied using Fourier expansion collocation method, within the frame work of linearized, three-dimensional theory of thermoelasticity. Three displacement po- tential functions are introduced, to uncouple the equations of motion and the heat conduction. The frequency equations are obtained for longitudinal and flexural (symmetric and antisymmet- ric) modes of vibration and are studied numerically for elliptic and parabolic cross-sectional zinc cylinders. The computed non-dimensional wave numbers are presented in the form of dispersion curves.