The purpose of this research is to study the effect of voids on the surface wave propagation in a layer of a transversely isotropic thermoelastic material with voids lying over an isotropic elastic half-space. The fre...The purpose of this research is to study the effect of voids on the surface wave propagation in a layer of a transversely isotropic thermoelastic material with voids lying over an isotropic elastic half-space. The frequency equation is derived after developing a mathematical model for welded and smooth contact boundary conditions. The dispersion curves giving the phase velocity and attenuation coefficient via wave number are plotted graphically to depict the effects of voids and anisotropy for welded contact boundary conditions. The specific loss and amplitudes of the volume fraction field, the normal stress, and the temperature change for welded contact are obtained and shown graphically for a particular model to depict the voids and anisotropy effects. Some special cases are also deduced from the present investigation.展开更多
The present study enlightens the two-dimensional analysis of the thermo-mechanical response for a mi-cropolar double porous thermoelastic material with voids(MDPTMWV)by virtue of Eringen’s theory of nonlocal elastici...The present study enlightens the two-dimensional analysis of the thermo-mechanical response for a mi-cropolar double porous thermoelastic material with voids(MDPTMWV)by virtue of Eringen’s theory of nonlocal elasticity.Moore-Gibson-Thompson(MGT)heat equation is introduced to the considered model in the context of memory-dependent derivative and variable conductivity.By employing the normal mode technique,the non-dimensional coupled governing equations of motion are solved to determine the an-alytical expressions of the displacements,temperature,void volume fractions,microrotation vector,force stress tensors,and equilibrated stress vectors.Several two-dimensional graphs are presented to demon-strate the influence of various parameters,such as kernel functions,thermal conductivity,and nonlocality.Furthermore,different generalized thermoelasticity theories with variable conductivity are compared to visualize the variations in the distributions associated with the prior mentioned variables.Some particu-lar cases are also discussed in the presence and absence of different parameters.展开更多
基金the Council of Scientific and Industrial Research (CSIR) for the financial support
文摘The purpose of this research is to study the effect of voids on the surface wave propagation in a layer of a transversely isotropic thermoelastic material with voids lying over an isotropic elastic half-space. The frequency equation is derived after developing a mathematical model for welded and smooth contact boundary conditions. The dispersion curves giving the phase velocity and attenuation coefficient via wave number are plotted graphically to depict the effects of voids and anisotropy for welded contact boundary conditions. The specific loss and amplitudes of the volume fraction field, the normal stress, and the temperature change for welded contact are obtained and shown graphically for a particular model to depict the voids and anisotropy effects. Some special cases are also deduced from the present investigation.
文摘The present study enlightens the two-dimensional analysis of the thermo-mechanical response for a mi-cropolar double porous thermoelastic material with voids(MDPTMWV)by virtue of Eringen’s theory of nonlocal elasticity.Moore-Gibson-Thompson(MGT)heat equation is introduced to the considered model in the context of memory-dependent derivative and variable conductivity.By employing the normal mode technique,the non-dimensional coupled governing equations of motion are solved to determine the an-alytical expressions of the displacements,temperature,void volume fractions,microrotation vector,force stress tensors,and equilibrated stress vectors.Several two-dimensional graphs are presented to demon-strate the influence of various parameters,such as kernel functions,thermal conductivity,and nonlocality.Furthermore,different generalized thermoelasticity theories with variable conductivity are compared to visualize the variations in the distributions associated with the prior mentioned variables.Some particu-lar cases are also discussed in the presence and absence of different parameters.