Thermoelectric generators(TEGs)play a critical role in collecting renewable energy fromthe sun and deep space to generate clean electricity.With their environmentally friendly,reliable,and noise-free operation,TEGs of...Thermoelectric generators(TEGs)play a critical role in collecting renewable energy fromthe sun and deep space to generate clean electricity.With their environmentally friendly,reliable,and noise-free operation,TEGs offer diverse applications,including areas with limited power infrastructure,microelectronic devices,and wearable technology.The review thoroughly analyses TEG system configurations,performance,and applications driven by solar and/or radiative cooling,covering non-concentrating,concentrating,radiative cooling-driven,and dual-mode TEGs.Materials for solar absorbers and radiative coolers,simulation techniques,energy storage management,and thermal management strategies are explored.The integration of TEGs with combined heat and power systems is identified as a promising application.Additionally,TEGs hold potential as charging sources for electronic devices.This comprehensive review provides valuable insights into this energy collection approach,facilitating improved efficiency,reduced costs,and expanded applications.It also highlights current limitations and knowledge gaps,emphasizing the importance of further research and development in unlocking the full potential of TEGs for a sustainable and efficient energy future.展开更多
Thermoelectric generators(TEGs)are considered promising devices for waste heat recovery from various systems.The Seebeck effect can be utilized to generate power using the residual heat emitted by the filter dryer rec...Thermoelectric generators(TEGs)are considered promising devices for waste heat recovery from various systems.The Seebeck effect can be utilized to generate power using the residual heat emitted by the filter dryer receiver(FDR)of an air conditioning(A/C)system,which would otherwise go to waste.The study aims to build a set of thermoelectric generators(TEG)to collect the waste heat of the FDR and generate low-power electricity.A novel electrical circuit with two transformers is designed and fabricated to produce a more stable voltage for operation and charging.The thermoelectric generator(TEGs)was installed on the FDR of the A/C unit.The test showed that climate conditions have a significant impact on the output power generated from the system.The results showed that the peak voltage recorded in the current study is 5.2 V per day(wet,cold,and wind weather)with an output power of 0.2 W.These values are acceptable for powering the load and charging a single battery with 3.5 V as the voltage increases battery 0.1 V/20 min charge.A case study of operating the emergency signs in a building was considered.The current heat recovery system is deemed to be easily installed and can be connected to a network of TEGs to produce more power.展开更多
Our community currently deals with issues such as rising electricity costs,pollution,and global warming.Scientists work to improve energy harvesting-based power generators in order to reduce their impacts.The Seebeck ...Our community currently deals with issues such as rising electricity costs,pollution,and global warming.Scientists work to improve energy harvesting-based power generators in order to reduce their impacts.The Seebeck effect has been used to illustrate the capacity of thermoelectric generators(TEGs)to directly convert thermal energy to electrical energy.They are also ecologically beneficial since they do not include chemical products,function quietly because they lack mechanical structures and/or moving components,and may be built using different fabrication technologies such as three-dimentional(3D)printing,silicon technology,and screen printing,etc.TEGs are also position-independent and have a long operational lifetime.TEGs can be integrated into bulk and flexible devices.This review gives further investigation of TEGs,beginning with a full discussion of their operating principle,kinds,materials utilized,figure of merit,and improvement approaches,which include various thermoelectric material arrangements and utilised technologies.This paper also discusses the use of TEGs in a variety of disciplines such as automobile and biomedical.展开更多
Wireless sensor networks are widely used for monitoring in remote areas. They mainly consist of wireless sensor nodes, which are usually powered by batteries with limited capacity, but are expected to last for long pe...Wireless sensor networks are widely used for monitoring in remote areas. They mainly consist of wireless sensor nodes, which are usually powered by batteries with limited capacity, but are expected to last for long periods of time. To overcome these limitations and achieve perpetual autonomy, an energy harvesting technique using a thermoelectric generator (TEG) coupled with storage on supercapacitors is proposed. The originality of the work lies in the presentation of a maintenance-free, robust, and tested solution, well adapted to a harsh industrial context with a permanent temperature gradient. The harvesting part, which is attached to the hot spot in a few seconds using magnets, can withstand temperatures of 200°C. The storage unit, which contains the electronics and supercapacitors, operates at temperatures of up to 80°C. More specifically, this article describes the final design of a 3.3 V 60 mA battery-free power supply. An analysis of the thermal potential and the electrical power that can be recovered is presented, followed by the design of the main electronic stages: energy recovery using a BQ25504, storage on supercapacitors and finally shaping the output voltage with a boost (TPS610995) followed by an LDO (TPS71533).展开更多
With the rapid development of Internet of Things and miniaturized electronics, the demand for wearable power sources with high reliability and long duty cycle promotes the exploration of wearable thermoelectric genera...With the rapid development of Internet of Things and miniaturized electronics, the demand for wearable power sources with high reliability and long duty cycle promotes the exploration of wearable thermoelectric generators(TEGs). In particular, textile-based TEGs that can perpetually convert the ubiquitous temperature gradient between human body and ambience into electrical energy have attracted intensive attention to date.These lightweight and three-dimensional deformable TEGs comprised of fibers, filaments, yarns, or fabrics offer unique merits as wearable power source in comparison with conventional TEGs. In this review, we systematically summarize the state-of-the-art strategies for textile-based TEGs, including the structure design, fabrication, device performance, and application. Existing critical issues and future research emphasis are also discussed.展开更多
Segmented thermoelectric generators(STEGs)can exhibit present superior performance than those of the conventional thermoelectric generators.Thermal and electrical contact resistances exist between the thermoelectric m...Segmented thermoelectric generators(STEGs)can exhibit present superior performance than those of the conventional thermoelectric generators.Thermal and electrical contact resistances exist between the thermoelectric material interfaces in each thermoelectric leg.This may significantly hinder performance improvement.In this study,a five-layer STEG with three pairs of thermoelectric(TE)materials was investigated considering the thermal and electrical contact resistances on the material contact surface.The STEG performance under different contact resistances with various combinations of TE materials were analyzed.The relationship between the material sequence and performance indicators under different contact resistances is established by machine learning.Based on the genetic algorithm,for each contact resistance combination,the optimal material sequences were identified by maximizing the electric power and energy conversion efficiency.To reveal the underlying mechanism that determines the heat-to-electrical performance,the total electrical resistance,output voltage,ZT value,and temperature distribution under each optimized scenario were analyzed.The STEG can augment the heat-to-electricity performance only at small contact resistances.A large contact resistance significantly reduces the performance.At an electrical contact resistance of RE=10^(-3) K⋅m^(2)⋅W^(-1) and thermal contact resistance of RT=10-8Ω⋅m^(2),the maximum electric power was reduced to 5.71 mW(90.86 mW without considering the contact resistance).And the maximum energy conversion efficiency is lowered to 2.54%(12.59%without considering the contact resistance).展开更多
To satisfy the requirements of practical applications,thermoelectric generators should be highly efficient and mechanically robust.Recently,progress in designing high-performance thermoelectric generators has been mad...To satisfy the requirements of practical applications,thermoelectric generators should be highly efficient and mechanically robust.Recently,progress in designing high-performance thermoelectric generators has been made.However,the mechanical properties of thermoelectric generators are still unsatisfactory.In this review,studies on the mechanical properties of thermoelectric generators are summarized.The me-chanical properties of bulk thermoelectric generators will be first discussed.In this section,the mechan-ical properties of thermoelectric materials and the strategies for improving their mechanical properties are emphasized.Since the device’s failure usually occurs at the interface between the thermoelectric ma-terials and electrode,the joint strength of electrodes and thermoelectric materials will be overviewed.After that,the mechanical properties of the inorganic thin-film thermoelectric devices will be discussed.Since the figure of merit for the flexibility of thermoelectric materials depends on the film thickness,elastic modulus,and yield strength,the synthesis methods of thin-film thermoelectric materials will be reviewed.Finally,this review will be concluded with a discussion on flexible organic thermoelectric de-vices and flexible devices using bulk legs.展开更多
Optimized fin arrangement and dimension of heat exchanger can improve the maximum output power of thermoelectric generator(TEG)system which converts the wasted heat into electricity with thermoelectric modules(TEMs).C...Optimized fin arrangement and dimension of heat exchanger can improve the maximum output power of thermoelectric generator(TEG)system which converts the wasted heat into electricity with thermoelectric modules(TEMs).Considering that the geometric symmetry contributes to the temperature uniformity improvement and convenient TEMs arrangement,a low-backpressure TEG system based on a polyhedral-shape heat exchanger was developed.To assess the effect of inner topology and fin parameters on the heat transfer and output power of the TEG system,a realizable k-?turbulence based numerical model was established and validated to perform numerical simulations.The results demonstrate that increasing fin length,fin width and fin intersection angle are beneficial to the average surface temperature,temperature distribution uniformity and maximum output power of the TEG system.Moreover,decreasing fin spacing distance contributes to the enhanced average surface temperature and maximum power of TEG system,and has insignificant effect on its temperature uniformity.The inserted fins with optimal length,width,intersection angle and spacing distance enhance higher output power,whereas result in increasing backpressure.The maximum difference between the experimental and simulation results is 3.2%,which validates the feasibility of the established numerical model.It also provides a theoretical reference to the optimal design and performance analysis of low-backpressure TEG systems used in automobile exhaust heat recovery.展开更多
Thermoelectric devices are one of the technologies used either to generate electricity by applying a temperature difference using thermal energy or as a heating/cooling system by applying an electrical voltage.The num...Thermoelectric devices are one of the technologies used either to generate electricity by applying a temperature difference using thermal energy or as a heating/cooling system by applying an electrical voltage.The number of materials required to produce a product is an important factor in determining its price.Production costs associated with these materials,as well as their availability and quality,play a crucial role in price determination by manufacturers.In this context,a method that employs a uniform volume distribution was implemented.This approach enabled the analysis to focus on other variables,thereby promoting a more precise and relevant evaluation of overall performance.Based on the finite element method,this study investigated the influence of geometric shape,including Rect-leg,Y-leg,Pin-leg and X-leg designs,on the performance of solar thermoelectric generators and thermoelectric coolers.The study was conducted considering the same hot alumina junction surface that receives solar radiation;however,the ef-fective surface,which corresponded to the heat flow area and had a similar area near the exposed surface,varied depending on the chosen leg geometry,thus impacting the heat flux due to the variation in thermal resistance.In the case of a solar thermoelectric generator,the Rect-leg model,having the same effective surface area,presented the lowest heat loss value resulting from convection and radiation in the heat spreader and the hot alumina plate.Under the same conditions,the Y-leg showed the highest value.The Rect-leg design generated,by using thermal and optical concentration,the highest output power of 0.028 and 0.054 W,and efficiency of 3.47%and 4.7%,respectively,whereas the Y-leg generated lower values of 0.006523 and 0.018744 W for power,and 2.83%and 2.71%for efficiency,respectively.In the case of the thermoelectric coolers,the Y-leg generated the highest temperature difference between the hot and cold sides of 67.28 K at an electric current value of 1.8 A,whereas the Rect-leg,Pin-leg and X-leg generated~66.25,~67.02 and~67.19 K at 6.1,2.7 and 2.6 A.展开更多
Renewable energy technologies are central to emissions reduction and essential to achieve net-zero emission.Segmented thermoelectric generators(STEG)facilitate more efficient thermal energy recovery over a large tempe...Renewable energy technologies are central to emissions reduction and essential to achieve net-zero emission.Segmented thermoelectric generators(STEG)facilitate more efficient thermal energy recovery over a large temperature gradient.However,the additional design complexity has introduced challenges in the modelling and optimization of its performance.In this work,an artificial neural network(ANN)has been applied to build accurate and fast forward modelling of the STEG.More importantly,we adopt an iterative method in the ANN training process to improve accuracy without increasing the dataset size.This approach strengthens the proportion of the high-power performance in the STEG training dataset.Without increasing the size of the training dataset,the relative prediction error over high-power STEG designs decreases from 0.06 to 0.02,representing a threefold improvement.Coupling with a genetic algorithm,the trained artificial neural networks can perform design optimization within 10 s for each operating condition.It is over 5,000 times faster than the optimization performed by the conventional finite element method.Such an accurate and fast modeller also allows mapping of the STEG power against different parameters.The modelling approach demonstrated in this work indicates its future application in designing and optimizing complex energy harvesting technologies.展开更多
This paper investigates the heat transfer characteristics of a thermoelectric generator. The influence of heat dissipation intensity to the sub-thermal resistances distribution is experimentally studied. Based on the ...This paper investigates the heat transfer characteristics of a thermoelectric generator. The influence of heat dissipation intensity to the sub-thermal resistances distribution is experimentally studied. Based on the thermal network analysis and finite time thermodynamics, an analytical model including all thermal resistances (in both thermocouples and external heat exchangers) is developed to predict the performance of the generator. The results show that the computed values of output power agree well with the experimental values. The heat transfer enhancement on the generator cold side greatly reduces the cold side temperature and thermal resistance, and obviously improves the output power. Compare with air natural convection cooling, the main thermal resistance changes from the resistance between the fins and the ambient to the thermal contact resistances between the generator and the heat sink at the conditions of forced convection and water cooling. This study may be guide the optimization of generator structure.展开更多
Nanostructured surface is a promising photon management strategy to tune spectrum in design of the selective solar absorber.In this paper,we propose a nanocone structured surface as a perfect solar absorber in applica...Nanostructured surface is a promising photon management strategy to tune spectrum in design of the selective solar absorber.In this paper,we propose a nanocone structured surface as a perfect solar absorber in application of the solar thermoelectric generators(STEGs).The trade-off between the solar absorption and the mid-infrared emission is obtained to maximize the STEG efficiency.The effects of the geometric parameters,thermal concentration,incident angle and polarized state as well as the lattice arrangement are systematically investigated.The results show that the STEGs equipped with our proposed selective solar absorber can achieve a peak efficiency of 6.53%under AM1.5G condition(no optical concentration).Furthermore,the selective solar absorber exhibits insensitive behavior to the incident angle and polarization angle as well.This means that the proposed selective solar absorber can utilize solar energy as much as possible and be generally suitable in equipping the STEGs without optical concentration.展开更多
Thermoelectric generators(TEGs)have received increasing attention due to their potential to harvest low-grade heat energy(<100℃ )and provide power for the Internet of Things(IoT)and wearable electronic devices.Her...Thermoelectric generators(TEGs)have received increasing attention due to their potential to harvest low-grade heat energy(<100℃ )and provide power for the Internet of Things(IoT)and wearable electronic devices.Herein,a wood-based ordered framework is used to fabricate carbon nanotube/poly(3,4-ethylenedioxythiophene)(CNT/PEDOT)wood aerogel for TEG.The prepared CNT/PEDOT wood aerogel with an anisotropic structure exhibits a low thermal conductivity of 0.17 W m^(−1)K^(−1)and is advantageous to develop a sufficient temperature gradient.Meanwhile,CNT/PEDOT composites effectively decouple the relationship between the Seebeck coefficient and electrical conductivity by energy filtering effect to enhance thermoelectric(TE)output properties.The vertical TEG assembled by the CNT/PEDOT wood aerogels reveals an output power of 1.5μW and a mass-specific power of 15.48μW g^(−1)at a temperature difference of 39.4 K.Moreover,the layered structure renders high compressibility and fatigue resistance.The anisotropic structure,high mechanical performance,and rapid thermoelectric response,enabling the TEG based on CNT/PEDOT wood aerogel offer opportunities for continuous power supply to low-power electronic devices.展开更多
With progressively stringent fuel consumption regulations,many researchers and engineers are focusing on the employment of waste heat recovery technologies for automotive applications.Regarded as a promising method of...With progressively stringent fuel consumption regulations,many researchers and engineers are focusing on the employment of waste heat recovery technologies for automotive applications.Regarded as a promising method of waste heat recovery,the thermoelectric generator(TEG)has been given increasing attention over the whole automotive industry for the last decade.In this study,we first give a brief review of improvements in thermoelectric materials and heat exchangers for TEG systems.We then present a novel design for a concentric cylindrical TEG system that addresses the existing weaknesses of the heat exchanger.In place of the typical square-shaped thermoelectric module,our proposed concentric cylindrical TEG system uses an annular thermoelectric module and employs the advantages of the heat pipe to enhance the heat transfer in the radial direction.The simulations we carried out to verify the performance of the proposed system showed better power output among the existing TEG system,and a comparison of water-inside and gas-inside arrangements showed that the water-inside concentric cylindrical TEG system produced a higher power output.展开更多
Pressure reduction station(PRS)is an essential facility in natural gas transmission,which owns the function of pressure reduction,demand-supply management and flow metering.However,a large number of PRSs are located i...Pressure reduction station(PRS)is an essential facility in natural gas transmission,which owns the function of pressure reduction,demand-supply management and flow metering.However,a large number of PRSs are located in off-grid areas and powered by battery equipment resulting in high maintenance costs.So,how to realize the energy independence of these PRSs is an urgent issue to be solved.Therefore,the natural gas fired thermoelectric generation(FTEG)module,including gas flue,cover,TEGs and heat radiators,is designed for PRS in off-grid areas.Phase change material is introduced into the FTEG module to change the operation mode from continuous mode into a periodic mode,and the prototype of the FTEG module is built to discuss the generation performance in different modes.The results show that the generation efficiency of the FTEG module is improved by 63%in periodic mode compared with the continuous mode.Then,the numerical model is established to investigate the impacts of air coefficient,cold-side heat radiator and number of TEGs on the module performance.It found that the impacts of cold-side heat radiator and the number of TEGs are more significant than those of the air coefficient.After adjusting these key parameters,an optimized FTEG module with 32 TEGs is proposed,which has an average power generation of 16.4 W and a heat collection efficiency of 84.6%.Eventually,3 to 6 modules can be connected in series to meet the power requirement of 50 W to 100 W for PRS.This high-performance FTEG module can accelerate the process of achieving the energy independence of PRS and promote its application in mesoscale equipment.展开更多
Solar thermoelectric generators (STEGs) are heat engines which can generate electricity from concentrated sunlight. The non-uniform illumination caused by the optical concentrator may affect the performance of solar...Solar thermoelectric generators (STEGs) are heat engines which can generate electricity from concentrated sunlight. The non-uniform illumination caused by the optical concentrator may affect the performance of solar thermoelectric generators. In this paper, a three- dimensional finite element model of solar thermoelectric generators is established. The two-dimensional Gaussian distribution is employed to modify the illumination profiles incident on the thermoelectric generator. Six non-uniformities of solar illumination are investigated while keeping the total energy constant. The influences of non-uniform illumination on the temperature distribution, the voltage distribution, and the maximum output power are respectively discussed. Three thermoelectric generators with 32, 18 and 8 pairs of thermocouples are compared to investigate their capability under non-uniform solar radiation. The result shows that the non-uniformity of the solar illumination has a great effect on the temperature distribution and the voltage distribution. Central thermoelectric legs can achieve a larger temperature difference and generate a larger voltage than peripheral ones. The non-uniform solar illumination will weaken the capability of the TE generator, and the maximum output power decrease by 1.4% among the range of non-uniformity studied in this paper. Reducing the number of the thermoelectric legs for non-uniform solar illumination can greatly increase the performance of the thermoelectric generator.展开更多
Solar energy has been increasing its share in the global energy structure. However, the thermal radiation brought by sunlight will attenuate the efficiency of solar cells. To reduce the temperature of the photovoltaic...Solar energy has been increasing its share in the global energy structure. However, the thermal radiation brought by sunlight will attenuate the efficiency of solar cells. To reduce the temperature of the photovoltaic (PV) cell and improve the utilization efficiency of solar energy, a hybrid system composed of the PV cell, a thermoelectric generator (TEG), and a water-cooled plate (WCP) was manufactured. The WCP cannot only cool the PV cell, but also effectively generate additional electric energy with the TEG using the waste heat of the PV cell. The changes in the efficiency and power density of the hybrid system were obtained by real time monitoring. The thermal and electrical tests were performed at different irradiations and the same experiment temperature of 22°C. At a light intensity of 1000 W/m2, the steady-state temperature of the PV cell decreases from 86.8°C to 54.1°C, and the overall efficiency increases from 15.6% to 21.1%. At a light intensity of 800 W/m2, the steady-state temperature of the PV cell decreases from 70°C to 45.8°C, and the overall efficiency increases from 9.28% to 12.59%. At a light intensity of 400 W/m2, the steady-state temperature of the PV cell decreases from 38.5°C to 31.5°C, and the overall efficiency is approximately 3.8%, basically remain unchanged.展开更多
We chose a definition of heatwaves (HWs) that has ~4-year recurrence frequency at world hot spots. We first examined the 1940-2022 HWs climatology and trends in lifespan, severity, spatial extent, and recurrence frequ...We chose a definition of heatwaves (HWs) that has ~4-year recurrence frequency at world hot spots. We first examined the 1940-2022 HWs climatology and trends in lifespan, severity, spatial extent, and recurrence frequency. HWs are becoming more frequent and more severe for extratropical mid- and low-latitudes. To euphemize HWs, we here propose a novel clean energy-tapping concept that utilizes the available nano-technology, micro-meteorology knowledge of temperature distribution within/without buildings, and radiative properties of earth atmosphere. The key points for a practical electricity generation scheme from HWs are defogging, insulation, and minimizing the absorption of infrared downward radiation at the cold legs of the thermoelectric generators. One sample realization is presented which, through relay with existing photovoltaic devices, provides all-day electricity supply sufficient for providing air conditioning requirement for a residence (~2000-watt throughput). The provision of power to air conditioning systems, usually imposes a significant stress on traditional city power grids during heatwaves.展开更多
Recently the concern about energy consumption across the globe has become more severe due to global warming. One essential way to address this problem is to maximize the efficiency of existing renewable energy resourc...Recently the concern about energy consumption across the globe has become more severe due to global warming. One essential way to address this problem is to maximize the efficiency of existing renewable energy resources and effectively eliminate their power losses. The previous studies on energy harvesting of photovoltaic (PV) modules try to cope with this problem using gradient-based control techniques and pay little attention to the significant loss of solar energy in the form of waste heat. To reconcile these waste-heat problems, this paper investigates hybrid photovoltaic-thermoelectric generation (PV-TEG) systems. We implement the generalized particle swarm optimization (GEPSO) technique to maximize the power of PV systems under dynamic conditions by utilizing the waste heat to produce electricity through embedding the thermoelectric generator (TEG) with the PV module. The removal of waste heat increases the efficiency of PV systems and also adds significant electrical power. As a control method, the proposed GEPSO can maximize the output power. Simulations confirm that GEPSO outperforms some state-of-the-art methods, e.g., the perturb and observe (PO), cuckoo search (CS), incremental conductance (INC), and particle swarm optimization (PSO), in terms of accuracy and tracking speed.展开更多
New alternatives and inventive renewable energy techniques which encompass both generation and power management solutions are fundamental for meeting remote residential energy supply and demand today, especially if th...New alternatives and inventive renewable energy techniques which encompass both generation and power management solutions are fundamental for meeting remote residential energy supply and demand today, especially if the grid is quasi-inexistent. Solar thermoelectric generators mounted on a dual-axis sun tracker can be a cost-effective alternative to photovoltaics for remote residential household power generation. A complete solar thermoelectric energy harvesting system is presented in this paper for energy delivery to remote residential areas in developing regions. To this end, the entire system was built, modeled, and then validated with the LTspice simulator software via the thermal-to-electrical analogy schemes. Valuable data in conjunction with a novel LTspice circuit were obtained, showing the achievability of analyzing transient heat transfer with the SPICE simulator; however a few of the problems to be solved remain at the practical level. Despite the unusual operation of the thermoelectric modules with the solar radiation, the simulation and measurements were in good agreement, thus validating the new modeling strategy.展开更多
基金supported by the Hong Kong Polytechnic University through Projects of RCRE(Project No.1-BBEG)sponsored by the Research Grants Council of HongKong and the NationalNatural Science Foundation of China(Project No.N_PolyU513/18).
文摘Thermoelectric generators(TEGs)play a critical role in collecting renewable energy fromthe sun and deep space to generate clean electricity.With their environmentally friendly,reliable,and noise-free operation,TEGs offer diverse applications,including areas with limited power infrastructure,microelectronic devices,and wearable technology.The review thoroughly analyses TEG system configurations,performance,and applications driven by solar and/or radiative cooling,covering non-concentrating,concentrating,radiative cooling-driven,and dual-mode TEGs.Materials for solar absorbers and radiative coolers,simulation techniques,energy storage management,and thermal management strategies are explored.The integration of TEGs with combined heat and power systems is identified as a promising application.Additionally,TEGs hold potential as charging sources for electronic devices.This comprehensive review provides valuable insights into this energy collection approach,facilitating improved efficiency,reduced costs,and expanded applications.It also highlights current limitations and knowledge gaps,emphasizing the importance of further research and development in unlocking the full potential of TEGs for a sustainable and efficient energy future.
文摘Thermoelectric generators(TEGs)are considered promising devices for waste heat recovery from various systems.The Seebeck effect can be utilized to generate power using the residual heat emitted by the filter dryer receiver(FDR)of an air conditioning(A/C)system,which would otherwise go to waste.The study aims to build a set of thermoelectric generators(TEG)to collect the waste heat of the FDR and generate low-power electricity.A novel electrical circuit with two transformers is designed and fabricated to produce a more stable voltage for operation and charging.The thermoelectric generator(TEGs)was installed on the FDR of the A/C unit.The test showed that climate conditions have a significant impact on the output power generated from the system.The results showed that the peak voltage recorded in the current study is 5.2 V per day(wet,cold,and wind weather)with an output power of 0.2 W.These values are acceptable for powering the load and charging a single battery with 3.5 V as the voltage increases battery 0.1 V/20 min charge.A case study of operating the emergency signs in a building was considered.The current heat recovery system is deemed to be easily installed and can be connected to a network of TEGs to produce more power.
文摘Our community currently deals with issues such as rising electricity costs,pollution,and global warming.Scientists work to improve energy harvesting-based power generators in order to reduce their impacts.The Seebeck effect has been used to illustrate the capacity of thermoelectric generators(TEGs)to directly convert thermal energy to electrical energy.They are also ecologically beneficial since they do not include chemical products,function quietly because they lack mechanical structures and/or moving components,and may be built using different fabrication technologies such as three-dimentional(3D)printing,silicon technology,and screen printing,etc.TEGs are also position-independent and have a long operational lifetime.TEGs can be integrated into bulk and flexible devices.This review gives further investigation of TEGs,beginning with a full discussion of their operating principle,kinds,materials utilized,figure of merit,and improvement approaches,which include various thermoelectric material arrangements and utilised technologies.This paper also discusses the use of TEGs in a variety of disciplines such as automobile and biomedical.
文摘Wireless sensor networks are widely used for monitoring in remote areas. They mainly consist of wireless sensor nodes, which are usually powered by batteries with limited capacity, but are expected to last for long periods of time. To overcome these limitations and achieve perpetual autonomy, an energy harvesting technique using a thermoelectric generator (TEG) coupled with storage on supercapacitors is proposed. The originality of the work lies in the presentation of a maintenance-free, robust, and tested solution, well adapted to a harsh industrial context with a permanent temperature gradient. The harvesting part, which is attached to the hot spot in a few seconds using magnets, can withstand temperatures of 200°C. The storage unit, which contains the electronics and supercapacitors, operates at temperatures of up to 80°C. More specifically, this article describes the final design of a 3.3 V 60 mA battery-free power supply. An analysis of the thermal potential and the electrical power that can be recovered is presented, followed by the design of the main electronic stages: energy recovery using a BQ25504, storage on supercapacitors and finally shaping the output voltage with a boost (TPS610995) followed by an LDO (TPS71533).
基金financial support from the Fundamental Research Funds for the Central Universities(2232019A3-05 and 2232019D3-11)the National Natural Science Foundation of China(No.51603036)+2 种基金Young Elite Scientists Sponsorship Program by CAST(2017QNRC001)Shanghai Sailing Program(19YF1400700)DHU Distinguished Young Professor Program
文摘With the rapid development of Internet of Things and miniaturized electronics, the demand for wearable power sources with high reliability and long duty cycle promotes the exploration of wearable thermoelectric generators(TEGs). In particular, textile-based TEGs that can perpetually convert the ubiquitous temperature gradient between human body and ambience into electrical energy have attracted intensive attention to date.These lightweight and three-dimensional deformable TEGs comprised of fibers, filaments, yarns, or fabrics offer unique merits as wearable power source in comparison with conventional TEGs. In this review, we systematically summarize the state-of-the-art strategies for textile-based TEGs, including the structure design, fabrication, device performance, and application. Existing critical issues and future research emphasis are also discussed.
基金supported by the National Natural Science Foundation of China(Grant No.:52176070).
文摘Segmented thermoelectric generators(STEGs)can exhibit present superior performance than those of the conventional thermoelectric generators.Thermal and electrical contact resistances exist between the thermoelectric material interfaces in each thermoelectric leg.This may significantly hinder performance improvement.In this study,a five-layer STEG with three pairs of thermoelectric(TE)materials was investigated considering the thermal and electrical contact resistances on the material contact surface.The STEG performance under different contact resistances with various combinations of TE materials were analyzed.The relationship between the material sequence and performance indicators under different contact resistances is established by machine learning.Based on the genetic algorithm,for each contact resistance combination,the optimal material sequences were identified by maximizing the electric power and energy conversion efficiency.To reveal the underlying mechanism that determines the heat-to-electrical performance,the total electrical resistance,output voltage,ZT value,and temperature distribution under each optimized scenario were analyzed.The STEG can augment the heat-to-electricity performance only at small contact resistances.A large contact resistance significantly reduces the performance.At an electrical contact resistance of RE=10^(-3) K⋅m^(2)⋅W^(-1) and thermal contact resistance of RT=10-8Ω⋅m^(2),the maximum electric power was reduced to 5.71 mW(90.86 mW without considering the contact resistance).And the maximum energy conversion efficiency is lowered to 2.54%(12.59%without considering the contact resistance).
基金financially supported by the Shenzhen Sci-ence and Technology Program(No.KQTD20200820113045081)the State Key Laboratory of Advanced Welding and Join-ing,Harbin Institute of Technology+7 种基金the financial support from the National Natural Science Foun-dation of China(Nos.52172194,51971081)the Natural Sci-ence Foundation for Distinguished Young Scholars of Guangdong Province of China(No.2020B1515020023)the Natural Science Foundation for Distinguished Young Scholars of Shenzhen(No.RCJC20210609103733073)the Key Project of Shenzhen Funda-mental Research Projects(No.JCYJ20200109113418655)the financial support from the National Natural Sci-ence Foundation of China(No.51871081)the financial support from the National Natural Science Foundation of China(No.52101248)Shenzhen fundamental research projects(No.JCYJ20210324132808020)the start-up funding of Shenzhen,and the start-up funding of Harbin Institute of Technology(Shen-zhen).
文摘To satisfy the requirements of practical applications,thermoelectric generators should be highly efficient and mechanically robust.Recently,progress in designing high-performance thermoelectric generators has been made.However,the mechanical properties of thermoelectric generators are still unsatisfactory.In this review,studies on the mechanical properties of thermoelectric generators are summarized.The me-chanical properties of bulk thermoelectric generators will be first discussed.In this section,the mechan-ical properties of thermoelectric materials and the strategies for improving their mechanical properties are emphasized.Since the device’s failure usually occurs at the interface between the thermoelectric ma-terials and electrode,the joint strength of electrodes and thermoelectric materials will be overviewed.After that,the mechanical properties of the inorganic thin-film thermoelectric devices will be discussed.Since the figure of merit for the flexibility of thermoelectric materials depends on the film thickness,elastic modulus,and yield strength,the synthesis methods of thin-film thermoelectric materials will be reviewed.Finally,this review will be concluded with a discussion on flexible organic thermoelectric de-vices and flexible devices using bulk legs.
基金supported by the National Natural Science Foundation of China(51977061,51407063,61903129)Open Foundation of Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System(HBSEES202205)。
文摘Optimized fin arrangement and dimension of heat exchanger can improve the maximum output power of thermoelectric generator(TEG)system which converts the wasted heat into electricity with thermoelectric modules(TEMs).Considering that the geometric symmetry contributes to the temperature uniformity improvement and convenient TEMs arrangement,a low-backpressure TEG system based on a polyhedral-shape heat exchanger was developed.To assess the effect of inner topology and fin parameters on the heat transfer and output power of the TEG system,a realizable k-?turbulence based numerical model was established and validated to perform numerical simulations.The results demonstrate that increasing fin length,fin width and fin intersection angle are beneficial to the average surface temperature,temperature distribution uniformity and maximum output power of the TEG system.Moreover,decreasing fin spacing distance contributes to the enhanced average surface temperature and maximum power of TEG system,and has insignificant effect on its temperature uniformity.The inserted fins with optimal length,width,intersection angle and spacing distance enhance higher output power,whereas result in increasing backpressure.The maximum difference between the experimental and simulation results is 3.2%,which validates the feasibility of the established numerical model.It also provides a theoretical reference to the optimal design and performance analysis of low-backpressure TEG systems used in automobile exhaust heat recovery.
文摘Thermoelectric devices are one of the technologies used either to generate electricity by applying a temperature difference using thermal energy or as a heating/cooling system by applying an electrical voltage.The number of materials required to produce a product is an important factor in determining its price.Production costs associated with these materials,as well as their availability and quality,play a crucial role in price determination by manufacturers.In this context,a method that employs a uniform volume distribution was implemented.This approach enabled the analysis to focus on other variables,thereby promoting a more precise and relevant evaluation of overall performance.Based on the finite element method,this study investigated the influence of geometric shape,including Rect-leg,Y-leg,Pin-leg and X-leg designs,on the performance of solar thermoelectric generators and thermoelectric coolers.The study was conducted considering the same hot alumina junction surface that receives solar radiation;however,the ef-fective surface,which corresponded to the heat flow area and had a similar area near the exposed surface,varied depending on the chosen leg geometry,thus impacting the heat flux due to the variation in thermal resistance.In the case of a solar thermoelectric generator,the Rect-leg model,having the same effective surface area,presented the lowest heat loss value resulting from convection and radiation in the heat spreader and the hot alumina plate.Under the same conditions,the Y-leg showed the highest value.The Rect-leg design generated,by using thermal and optical concentration,the highest output power of 0.028 and 0.054 W,and efficiency of 3.47%and 4.7%,respectively,whereas the Y-leg generated lower values of 0.006523 and 0.018744 W for power,and 2.83%and 2.71%for efficiency,respectively.In the case of the thermoelectric coolers,the Y-leg generated the highest temperature difference between the hot and cold sides of 67.28 K at an electric current value of 1.8 A,whereas the Rect-leg,Pin-leg and X-leg generated~66.25,~67.02 and~67.19 K at 6.1,2.7 and 2.6 A.
基金supported by an EPSRC IAA funding.The authors acknowledge using the IRIDIS High-Performance Computing Facility and associated support services at the University of Southampton to complete this work.All data supporting this study are available from the University of Southampton repository at DOI:https://doi.org/10.5258/SOTON/D2454.
文摘Renewable energy technologies are central to emissions reduction and essential to achieve net-zero emission.Segmented thermoelectric generators(STEG)facilitate more efficient thermal energy recovery over a large temperature gradient.However,the additional design complexity has introduced challenges in the modelling and optimization of its performance.In this work,an artificial neural network(ANN)has been applied to build accurate and fast forward modelling of the STEG.More importantly,we adopt an iterative method in the ANN training process to improve accuracy without increasing the dataset size.This approach strengthens the proportion of the high-power performance in the STEG training dataset.Without increasing the size of the training dataset,the relative prediction error over high-power STEG designs decreases from 0.06 to 0.02,representing a threefold improvement.Coupling with a genetic algorithm,the trained artificial neural networks can perform design optimization within 10 s for each operating condition.It is over 5,000 times faster than the optimization performed by the conventional finite element method.Such an accurate and fast modeller also allows mapping of the STEG power against different parameters.The modelling approach demonstrated in this work indicates its future application in designing and optimizing complex energy harvesting technologies.
基金supported by The Major Technology Special Program of Guangdong Province(Grant No.2008A080302002 and 2010A080405003)
文摘This paper investigates the heat transfer characteristics of a thermoelectric generator. The influence of heat dissipation intensity to the sub-thermal resistances distribution is experimentally studied. Based on the thermal network analysis and finite time thermodynamics, an analytical model including all thermal resistances (in both thermocouples and external heat exchangers) is developed to predict the performance of the generator. The results show that the computed values of output power agree well with the experimental values. The heat transfer enhancement on the generator cold side greatly reduces the cold side temperature and thermal resistance, and obviously improves the output power. Compare with air natural convection cooling, the main thermal resistance changes from the resistance between the fins and the ambient to the thermal contact resistances between the generator and the heat sink at the conditions of forced convection and water cooling. This study may be guide the optimization of generator structure.
基金supported by the National Natural Science Foundation of China(Grant No.51336003)the 333 Scientific Research Project of Jiangsu Province(Grant No.BRA2011134)
文摘Nanostructured surface is a promising photon management strategy to tune spectrum in design of the selective solar absorber.In this paper,we propose a nanocone structured surface as a perfect solar absorber in application of the solar thermoelectric generators(STEGs).The trade-off between the solar absorption and the mid-infrared emission is obtained to maximize the STEG efficiency.The effects of the geometric parameters,thermal concentration,incident angle and polarized state as well as the lattice arrangement are systematically investigated.The results show that the STEGs equipped with our proposed selective solar absorber can achieve a peak efficiency of 6.53%under AM1.5G condition(no optical concentration).Furthermore,the selective solar absorber exhibits insensitive behavior to the incident angle and polarization angle as well.This means that the proposed selective solar absorber can utilize solar energy as much as possible and be generally suitable in equipping the STEGs without optical concentration.
基金supported by the National Natural Science Foundation of China(No.32071714)Guangzhou Science and Technology project(No.202002030167)Guangdong Basic and Applied Basic Research Foundation(No.2019A1515110910)。
文摘Thermoelectric generators(TEGs)have received increasing attention due to their potential to harvest low-grade heat energy(<100℃ )and provide power for the Internet of Things(IoT)and wearable electronic devices.Herein,a wood-based ordered framework is used to fabricate carbon nanotube/poly(3,4-ethylenedioxythiophene)(CNT/PEDOT)wood aerogel for TEG.The prepared CNT/PEDOT wood aerogel with an anisotropic structure exhibits a low thermal conductivity of 0.17 W m^(−1)K^(−1)and is advantageous to develop a sufficient temperature gradient.Meanwhile,CNT/PEDOT composites effectively decouple the relationship between the Seebeck coefficient and electrical conductivity by energy filtering effect to enhance thermoelectric(TE)output properties.The vertical TEG assembled by the CNT/PEDOT wood aerogels reveals an output power of 1.5μW and a mass-specific power of 15.48μW g^(−1)at a temperature difference of 39.4 K.Moreover,the layered structure renders high compressibility and fatigue resistance.The anisotropic structure,high mechanical performance,and rapid thermoelectric response,enabling the TEG based on CNT/PEDOT wood aerogel offer opportunities for continuous power supply to low-power electronic devices.
基金This study was supported by the China FAW Group Corporation R&D Centrethe Ningbo Science and Technology Bureau’s Technology Innovation Team Project under Grant No.2016B10010.
文摘With progressively stringent fuel consumption regulations,many researchers and engineers are focusing on the employment of waste heat recovery technologies for automotive applications.Regarded as a promising method of waste heat recovery,the thermoelectric generator(TEG)has been given increasing attention over the whole automotive industry for the last decade.In this study,we first give a brief review of improvements in thermoelectric materials and heat exchangers for TEG systems.We then present a novel design for a concentric cylindrical TEG system that addresses the existing weaknesses of the heat exchanger.In place of the typical square-shaped thermoelectric module,our proposed concentric cylindrical TEG system uses an annular thermoelectric module and employs the advantages of the heat pipe to enhance the heat transfer in the radial direction.The simulations we carried out to verify the performance of the proposed system showed better power output among the existing TEG system,and a comparison of water-inside and gas-inside arrangements showed that the water-inside concentric cylindrical TEG system produced a higher power output.
基金jointly supported by the Natural Science Foundation of China(52176007)the Fundamental Research Funds for the Central Universities(2016YXMS048)Basic Research Program of Shenzhen Science and Technology(JCYJ20210324115611030)。
文摘Pressure reduction station(PRS)is an essential facility in natural gas transmission,which owns the function of pressure reduction,demand-supply management and flow metering.However,a large number of PRSs are located in off-grid areas and powered by battery equipment resulting in high maintenance costs.So,how to realize the energy independence of these PRSs is an urgent issue to be solved.Therefore,the natural gas fired thermoelectric generation(FTEG)module,including gas flue,cover,TEGs and heat radiators,is designed for PRS in off-grid areas.Phase change material is introduced into the FTEG module to change the operation mode from continuous mode into a periodic mode,and the prototype of the FTEG module is built to discuss the generation performance in different modes.The results show that the generation efficiency of the FTEG module is improved by 63%in periodic mode compared with the continuous mode.Then,the numerical model is established to investigate the impacts of air coefficient,cold-side heat radiator and number of TEGs on the module performance.It found that the impacts of cold-side heat radiator and the number of TEGs are more significant than those of the air coefficient.After adjusting these key parameters,an optimized FTEG module with 32 TEGs is proposed,which has an average power generation of 16.4 W and a heat collection efficiency of 84.6%.Eventually,3 to 6 modules can be connected in series to meet the power requirement of 50 W to 100 W for PRS.This high-performance FTEG module can accelerate the process of achieving the energy independence of PRS and promote its application in mesoscale equipment.
基金This work was supported by the National Natural Science Foundation of China (Grant No.51590903).
文摘Solar thermoelectric generators (STEGs) are heat engines which can generate electricity from concentrated sunlight. The non-uniform illumination caused by the optical concentrator may affect the performance of solar thermoelectric generators. In this paper, a three- dimensional finite element model of solar thermoelectric generators is established. The two-dimensional Gaussian distribution is employed to modify the illumination profiles incident on the thermoelectric generator. Six non-uniformities of solar illumination are investigated while keeping the total energy constant. The influences of non-uniform illumination on the temperature distribution, the voltage distribution, and the maximum output power are respectively discussed. Three thermoelectric generators with 32, 18 and 8 pairs of thermocouples are compared to investigate their capability under non-uniform solar radiation. The result shows that the non-uniformity of the solar illumination has a great effect on the temperature distribution and the voltage distribution. Central thermoelectric legs can achieve a larger temperature difference and generate a larger voltage than peripheral ones. The non-uniform solar illumination will weaken the capability of the TE generator, and the maximum output power decrease by 1.4% among the range of non-uniformity studied in this paper. Reducing the number of the thermoelectric legs for non-uniform solar illumination can greatly increase the performance of the thermoelectric generator.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.51690161 and 21701022)the Fundamental Research Funds for the Central Universities(Grant Nos.N182505037 and N2025035)+1 种基金the Young Elite Scientists Sponsorship Program by CAST(Grant No.2018QNRC001)the Liaoning Revitalization Talents Program(Grant No.XLYC1807214).
文摘Solar energy has been increasing its share in the global energy structure. However, the thermal radiation brought by sunlight will attenuate the efficiency of solar cells. To reduce the temperature of the photovoltaic (PV) cell and improve the utilization efficiency of solar energy, a hybrid system composed of the PV cell, a thermoelectric generator (TEG), and a water-cooled plate (WCP) was manufactured. The WCP cannot only cool the PV cell, but also effectively generate additional electric energy with the TEG using the waste heat of the PV cell. The changes in the efficiency and power density of the hybrid system were obtained by real time monitoring. The thermal and electrical tests were performed at different irradiations and the same experiment temperature of 22°C. At a light intensity of 1000 W/m2, the steady-state temperature of the PV cell decreases from 86.8°C to 54.1°C, and the overall efficiency increases from 15.6% to 21.1%. At a light intensity of 800 W/m2, the steady-state temperature of the PV cell decreases from 70°C to 45.8°C, and the overall efficiency increases from 9.28% to 12.59%. At a light intensity of 400 W/m2, the steady-state temperature of the PV cell decreases from 38.5°C to 31.5°C, and the overall efficiency is approximately 3.8%, basically remain unchanged.
文摘We chose a definition of heatwaves (HWs) that has ~4-year recurrence frequency at world hot spots. We first examined the 1940-2022 HWs climatology and trends in lifespan, severity, spatial extent, and recurrence frequency. HWs are becoming more frequent and more severe for extratropical mid- and low-latitudes. To euphemize HWs, we here propose a novel clean energy-tapping concept that utilizes the available nano-technology, micro-meteorology knowledge of temperature distribution within/without buildings, and radiative properties of earth atmosphere. The key points for a practical electricity generation scheme from HWs are defogging, insulation, and minimizing the absorption of infrared downward radiation at the cold legs of the thermoelectric generators. One sample realization is presented which, through relay with existing photovoltaic devices, provides all-day electricity supply sufficient for providing air conditioning requirement for a residence (~2000-watt throughput). The provision of power to air conditioning systems, usually imposes a significant stress on traditional city power grids during heatwaves.
文摘Recently the concern about energy consumption across the globe has become more severe due to global warming. One essential way to address this problem is to maximize the efficiency of existing renewable energy resources and effectively eliminate their power losses. The previous studies on energy harvesting of photovoltaic (PV) modules try to cope with this problem using gradient-based control techniques and pay little attention to the significant loss of solar energy in the form of waste heat. To reconcile these waste-heat problems, this paper investigates hybrid photovoltaic-thermoelectric generation (PV-TEG) systems. We implement the generalized particle swarm optimization (GEPSO) technique to maximize the power of PV systems under dynamic conditions by utilizing the waste heat to produce electricity through embedding the thermoelectric generator (TEG) with the PV module. The removal of waste heat increases the efficiency of PV systems and also adds significant electrical power. As a control method, the proposed GEPSO can maximize the output power. Simulations confirm that GEPSO outperforms some state-of-the-art methods, e.g., the perturb and observe (PO), cuckoo search (CS), incremental conductance (INC), and particle swarm optimization (PSO), in terms of accuracy and tracking speed.
文摘New alternatives and inventive renewable energy techniques which encompass both generation and power management solutions are fundamental for meeting remote residential energy supply and demand today, especially if the grid is quasi-inexistent. Solar thermoelectric generators mounted on a dual-axis sun tracker can be a cost-effective alternative to photovoltaics for remote residential household power generation. A complete solar thermoelectric energy harvesting system is presented in this paper for energy delivery to remote residential areas in developing regions. To this end, the entire system was built, modeled, and then validated with the LTspice simulator software via the thermal-to-electrical analogy schemes. Valuable data in conjunction with a novel LTspice circuit were obtained, showing the achievability of analyzing transient heat transfer with the SPICE simulator; however a few of the problems to be solved remain at the practical level. Despite the unusual operation of the thermoelectric modules with the solar radiation, the simulation and measurements were in good agreement, thus validating the new modeling strategy.