The key factor in semi-solid metal processing is the solid fraction at the forming temperature because it affects the microstructure and mechanical properties of the thixoformed components. Though an enormous amount o...The key factor in semi-solid metal processing is the solid fraction at the forming temperature because it affects the microstructure and mechanical properties of the thixoformed components. Though an enormous amount of data exists on the solid fraction-temperature re- lationship in A356 alloy, information regarding the solid fraction evolution characteristics of A356-TiB2 composites is scarce. The present article establishes the temperature-solid fraction correlation in A356 alloy and A356-xTiB2 (x = 2.5wt% and 5wt%) composites using dif- ferential thermal analysis (DTA). The DTA results indicate that the solidification characteristics of the composites exhibited a variation of 2℃ and 3℃ in liquidus temperatures and a variation of 3℃ and 5℃ in solidus temperatures with respect to the base alloy. Moreover, the eutectic growth temperature and the solid fraction(fs) vs. temperature characteristics of the composites were found to be higher than those of the base alloy. The investigation revealed that in-situ formed TiB2 particles in the molten metal introduced more nucleation sites and reduced undercooling.展开更多
Water is the most active component in all geological systems. It has an importanteffect on the physical properties of minerals and melts. It also plays a key role in the evolutionof the Earth. Accurate thermodynamics ...Water is the most active component in all geological systems. It has an importanteffect on the physical properties of minerals and melts. It also plays a key role in the evolutionof the Earth. Accurate thermodynamics data on water are currently confined to pressures below1.0 GPa and temperatures below 900℃. Presented in this paper are new data available on theP-T properties of water at pressures up t0 5. 0 GPa, developed from differential thermal analysis and ultrasonic wave amplitude analysis. It has been found that there may exist anotherternary point at 3. 0 GPa and that ultrasonic wave amplitude change of ice-water transitionshows two inflection points above 2. 0 GPa, consistent with the two peaks of differential thermal curves above 2. 0 GPa. It may be a new phenomenon which needs further study.展开更多
Due to the existence of poly-hydroxyl structures,the temperature may have an effect on the thermal stability of oleuropein for its applications.In the current study,the thermal decomposition process and kinetics behav...Due to the existence of poly-hydroxyl structures,the temperature may have an effect on the thermal stability of oleuropein for its applications.In the current study,the thermal decomposition process and kinetics behavior of oleuropein from the olive resource were researched by thermogravimetric theoretical analysis methods and non-isothermal kinetics simulation.The results of thermogravimetry analysis showed the whole thermal decomposi-tion process of oleuropein involved two stages,with 21.22%of residue.It was also revealed that high heating rates of more than 20 K min^(-1) led to significant thermal hysteresis and inhibited the whole thermal decomposition behavior of oleuropein.Moreover,an investigation of the thermal decomposition kinetics indicated that the non-isothermal decomposition behavior followed a D3 model during thefirst stage(three-dimensional diffusion,Jander equation)and a D1 model in the second stage(one-dimensional diffusion).For thefirst and second ther-mal decomposition stages,the Kissinger,Friedman,Flynn-Wall-Ozawa,and Coats–Redfern four methods were applied to determine the activation energy(E=143.72 and 247.01 kJ mol^(-1))and Arrhenius preexponential factor(ln A=26.34 and 42.45 min^(-1)),respectively.Therefore,the study will provide good theoretical guidance for ther-mal stability and thermal transformation application of oleuropein.It will be suitable for low-temperature appli-cations in the cosmetic,food supplement and pharmaceutical industries.展开更多
In this study,the impacts of internal heat generation on heat transfer enhancement of porous fin is theoretical investigated using differential transform method.The parametric studies reveal that porosity enhances the...In this study,the impacts of internal heat generation on heat transfer enhancement of porous fin is theoretical investigated using differential transform method.The parametric studies reveal that porosity enhances the fin heat dissipating capacity but the internal heat generation decreases the heat enhancement capacity of extended surface.Also,it is established that when the internal heat parameter increases to some certain values,some negative effects are recorded where the fin stores heat rather than dissipating it.This scenario defeats the prime purpose of the cooling fin.Additionally,it is established in the present study that the limiting value of porosity parameter for thermal stability for the passive device increases as internal heat parameter increases.This shows that although the internal heat parameter can help assist higher range and value of thermal stability of the fin,it produces negative effect which greatly defeats the ultimate purpose of the fin.The results in the work will help in fin design for industrial applications where internal heat generation is involved.展开更多
The heated process of raw materials for electron trapping materials (ETM) is investigated by thermo-analysis method. The temperature ranges of raw materials experienced some physical and chemical change processes, suc...The heated process of raw materials for electron trapping materials (ETM) is investigated by thermo-analysis method. The temperature ranges of raw materials experienced some physical and chemical change processes, such as dehydration, organic solvent removal, crystal sulphur burning, oxidation of alkaline earth sulfides and solid phase reaction (rare earth doped) and so on, are obtained. The experimental results also show that the presence of trace oxygen in shielded gas is very harmful to prepare the ETM.The raw material thermo-analysis results provide very important experimental reference for optimizing the ETM preparation techniques.展开更多
Indoor thermal comfort and passive solar heating technologies have been extensively studied.However,few studies have explored the suitability of passive solar heating technologies based on differentiated thermal comfo...Indoor thermal comfort and passive solar heating technologies have been extensively studied.However,few studies have explored the suitability of passive solar heating technologies based on differentiated thermal comfort demands.This work took the rural dwellings in Northwest China as the research object.First,the current indoor and outdoor thermal environment in winter and the mechanism of residents’differentiated demand for indoor thermal comfort were obtained through tests,questionnaires,and statistical analysis.Second,a comprehensive passive optimized design of existing buildings was conducted,and the validity of the optimized combination scheme was explored using DesignBuilder software.Finally,the suitability of passive solar heating technology for each region in Northwest China was analyzed based on residents’differentiated demand for indoor thermal comfort.The regions were then classified according to the suitability of the technology for these.The results showed that the indoor heating energy consumption was high and the indoor thermal environment was not ideal,yet the solar energy resources were abundant.Indoor comfort temperature indexes that match the functional rooms and usage periods were proposed.For the buildings with the optimized combination scheme,the average indoor temperature was increased significantly and the temperature fluctuation was decreased dramatically.Most regions in Northwest China were suitable for the development of passive solar heating technology.Based on the obtained suitability of the technology for the regions of Northwest China,these were classified into most suitable,more suitable,less suitable,and unsuitable regions.展开更多
Background:Differential scanning calorimetry as a method of investigating and monitoring the kinetics of herbal medicinal plants.Some instrumental and experimental aspects are discussed.Methods:A brief survey is made ...Background:Differential scanning calorimetry as a method of investigating and monitoring the kinetics of herbal medicinal plants.Some instrumental and experimental aspects are discussed.Methods:A brief survey is made of herbal medicinal plants and results of differential scanning calorimetry studies are reviewed and this discussion is presented the effects of the instrumental conditions like heating rate and the sample conditions like sample particle size,sample mass,sample purity,sample stability in the melting region and property of impurities.Conclusion:This study suggests that application of differential scanning calorimetry to study the interpretation on herbal medicinal drugs.展开更多
It is well known that trace amount of water has important effects on the physical properties of minerals and melts. Strength and viscosity decrease, diffusion rate and electrical conductivity increase, seismic waves a...It is well known that trace amount of water has important effects on the physical properties of minerals and melts. Strength and viscosity decrease, diffusion rate and electrical conductivity increase, seismic waves attenuate and liquidus temperatures are lowered by the addition of water. The effects make water one of the most active components of any geological system with implications for the evolution and dynamics of the earth.展开更多
Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requi...Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requires overcoming significant potential barriers in dynamics,which poses great difficulty in determining the c-BN/h-BN phase boundary.This study used high-pressure in situ differential thermal measurements to ascertain the temperature of h-BN/c-BN conversion within the commonly used pressure range(3-6 GPa)for the industrial synthesis of c-BN to constrain the P-T phase boundary of h-BN/c-BN in the pressure-temperature range as much as possible.Based on the analysis of the experimental data,it is determined that the relationship between pressure and temperature conforms to the following equation:P=a+1/bT.Here,P denotes the pressure(GPa)and T is the temperature(K).The coefficients are a=-3.8±0.8 GPa and b=229.8±17.1 GPa/K.These findings call into question existing high-pressure and high-temperature phase diagrams of boron nitride,which seem to overstate the phase boundary temperature between c-BN and h-BN.The BN phase diagram obtained from this study can provide critical temperature and pressure condition guidance for the industrial synthesis of c-BN,thus optimizing synthesis efficiency and product performance.展开更多
This work describes thermal decomposition behaviour of plastic bonded explosives(PBXs) based on mixture of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX) and 2,4,6-triamino-1,3,5-trinitrobenzene(TATB)with Viton A as poly...This work describes thermal decomposition behaviour of plastic bonded explosives(PBXs) based on mixture of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX) and 2,4,6-triamino-1,3,5-trinitrobenzene(TATB)with Viton A as polymer binder. Thermal decomposition of PBXs was undertaken by applying simultaneous thermal analysis(STA) and differential scanning calorimetry(DSC) to investigate influence of the HMX amount on thermal behavior and its kinetics. Thermogravimetric analysis(TGA) indicated that the thermal decomposition of PBXs based on mixture of HMX and TATB was occurred in a three-steps. The first step was mainly due to decomposition of HMX. The second step was ascribed due to decomposition of TATB, while the third step was occurred due to decomposition of the polymer matrices. The thermal decomposition % was increased with increasing HMX amount. The kinetics related to thermal decomposition were investigated under non-isothermal for a single heating rate measurement. The variation in the activation energy of PBXs based on mixture of HMX and TATB was observed with varying the HMX amount. The kinetics from the results of TGA data at various heating rates under non-isothermal conditions were also calculated by Flynn—Wall—Ozawa(FWO) and Kissinger-Akahira-Sunose(KAS)methods. The activation energies calculated by employing FWO method were very close to those obtained by KAS method. The mean activation energy calculated by FWO and KAS methods was also a good agreement with the activation energy obtained from single heating rate measurement in the first step decomposition.展开更多
Developing degradable films is an important means for resolving the problem of film pollution; however, in recent years, there have been only few studies related to the thermal analysis of degradable plastic films. Th...Developing degradable films is an important means for resolving the problem of film pollution; however, in recent years, there have been only few studies related to the thermal analysis of degradable plastic films. This research detailed the composition and pyrolysis of one kind of ordinary and three kinds of degradable plastic films using the differential thermal analysis (DTA) technique. The results showed that degradable films and ordinary film had similar DTA curves, which reflected their similar compositions; however, small differences were measured, which were due to the added constituents of the degradable films. The pyrolysis reaction orders of each film were about 0.93. The pyrolysis activation energies and pre-exponential factors followed the order of ordinary film 〉 photodegradable film 〉 photodegradable calcium carbonate film 〉 biodegradable film. The results of this research laid the foundation for new theories for harnessing soil pollution caused by plastic films.展开更多
基金financial support from the Indian Institute of Technology Bhubaneswar under the SEED project grant for fabricating the "cooling slope casting" experimental setupthe support extended by Central Research Facility (CRF), Indian Institute of Technology Kharagpur, toward the facility for conducting DTA experiments
文摘The key factor in semi-solid metal processing is the solid fraction at the forming temperature because it affects the microstructure and mechanical properties of the thixoformed components. Though an enormous amount of data exists on the solid fraction-temperature re- lationship in A356 alloy, information regarding the solid fraction evolution characteristics of A356-TiB2 composites is scarce. The present article establishes the temperature-solid fraction correlation in A356 alloy and A356-xTiB2 (x = 2.5wt% and 5wt%) composites using dif- ferential thermal analysis (DTA). The DTA results indicate that the solidification characteristics of the composites exhibited a variation of 2℃ and 3℃ in liquidus temperatures and a variation of 3℃ and 5℃ in solidus temperatures with respect to the base alloy. Moreover, the eutectic growth temperature and the solid fraction(fs) vs. temperature characteristics of the composites were found to be higher than those of the base alloy. The investigation revealed that in-situ formed TiB2 particles in the molten metal introduced more nucleation sites and reduced undercooling.
文摘Water is the most active component in all geological systems. It has an importanteffect on the physical properties of minerals and melts. It also plays a key role in the evolutionof the Earth. Accurate thermodynamics data on water are currently confined to pressures below1.0 GPa and temperatures below 900℃. Presented in this paper are new data available on theP-T properties of water at pressures up t0 5. 0 GPa, developed from differential thermal analysis and ultrasonic wave amplitude analysis. It has been found that there may exist anotherternary point at 3. 0 GPa and that ultrasonic wave amplitude change of ice-water transitionshows two inflection points above 2. 0 GPa, consistent with the two peaks of differential thermal curves above 2. 0 GPa. It may be a new phenomenon which needs further study.
基金This work was funded by Guangdong Basic and Applied Basic Research Foundation(No.2019A1515111159)Characteristic Innovative Projects for Education Department of Guangdong Province 2021 Year(No.2021KTSCX302).
文摘Due to the existence of poly-hydroxyl structures,the temperature may have an effect on the thermal stability of oleuropein for its applications.In the current study,the thermal decomposition process and kinetics behavior of oleuropein from the olive resource were researched by thermogravimetric theoretical analysis methods and non-isothermal kinetics simulation.The results of thermogravimetry analysis showed the whole thermal decomposi-tion process of oleuropein involved two stages,with 21.22%of residue.It was also revealed that high heating rates of more than 20 K min^(-1) led to significant thermal hysteresis and inhibited the whole thermal decomposition behavior of oleuropein.Moreover,an investigation of the thermal decomposition kinetics indicated that the non-isothermal decomposition behavior followed a D3 model during thefirst stage(three-dimensional diffusion,Jander equation)and a D1 model in the second stage(one-dimensional diffusion).For thefirst and second ther-mal decomposition stages,the Kissinger,Friedman,Flynn-Wall-Ozawa,and Coats–Redfern four methods were applied to determine the activation energy(E=143.72 and 247.01 kJ mol^(-1))and Arrhenius preexponential factor(ln A=26.34 and 42.45 min^(-1)),respectively.Therefore,the study will provide good theoretical guidance for ther-mal stability and thermal transformation application of oleuropein.It will be suitable for low-temperature appli-cations in the cosmetic,food supplement and pharmaceutical industries.
文摘In this study,the impacts of internal heat generation on heat transfer enhancement of porous fin is theoretical investigated using differential transform method.The parametric studies reveal that porosity enhances the fin heat dissipating capacity but the internal heat generation decreases the heat enhancement capacity of extended surface.Also,it is established that when the internal heat parameter increases to some certain values,some negative effects are recorded where the fin stores heat rather than dissipating it.This scenario defeats the prime purpose of the cooling fin.Additionally,it is established in the present study that the limiting value of porosity parameter for thermal stability for the passive device increases as internal heat parameter increases.This shows that although the internal heat parameter can help assist higher range and value of thermal stability of the fin,it produces negative effect which greatly defeats the ultimate purpose of the fin.The results in the work will help in fin design for industrial applications where internal heat generation is involved.
文摘The heated process of raw materials for electron trapping materials (ETM) is investigated by thermo-analysis method. The temperature ranges of raw materials experienced some physical and chemical change processes, such as dehydration, organic solvent removal, crystal sulphur burning, oxidation of alkaline earth sulfides and solid phase reaction (rare earth doped) and so on, are obtained. The experimental results also show that the presence of trace oxygen in shielded gas is very harmful to prepare the ETM.The raw material thermo-analysis results provide very important experimental reference for optimizing the ETM preparation techniques.
基金supported by the National Natural Science Foundation of China(Grant Nos.52078419 and 51678483)supported by the Doctoral Dissertation Innovation Fund of Xi’an University of Technology(310–252072116).
文摘Indoor thermal comfort and passive solar heating technologies have been extensively studied.However,few studies have explored the suitability of passive solar heating technologies based on differentiated thermal comfort demands.This work took the rural dwellings in Northwest China as the research object.First,the current indoor and outdoor thermal environment in winter and the mechanism of residents’differentiated demand for indoor thermal comfort were obtained through tests,questionnaires,and statistical analysis.Second,a comprehensive passive optimized design of existing buildings was conducted,and the validity of the optimized combination scheme was explored using DesignBuilder software.Finally,the suitability of passive solar heating technology for each region in Northwest China was analyzed based on residents’differentiated demand for indoor thermal comfort.The regions were then classified according to the suitability of the technology for these.The results showed that the indoor heating energy consumption was high and the indoor thermal environment was not ideal,yet the solar energy resources were abundant.Indoor comfort temperature indexes that match the functional rooms and usage periods were proposed.For the buildings with the optimized combination scheme,the average indoor temperature was increased significantly and the temperature fluctuation was decreased dramatically.Most regions in Northwest China were suitable for the development of passive solar heating technology.Based on the obtained suitability of the technology for the regions of Northwest China,these were classified into most suitable,more suitable,less suitable,and unsuitable regions.
文摘Background:Differential scanning calorimetry as a method of investigating and monitoring the kinetics of herbal medicinal plants.Some instrumental and experimental aspects are discussed.Methods:A brief survey is made of herbal medicinal plants and results of differential scanning calorimetry studies are reviewed and this discussion is presented the effects of the instrumental conditions like heating rate and the sample conditions like sample particle size,sample mass,sample purity,sample stability in the melting region and property of impurities.Conclusion:This study suggests that application of differential scanning calorimetry to study the interpretation on herbal medicinal drugs.
基金the National Natural Science Foundation of China.
文摘It is well known that trace amount of water has important effects on the physical properties of minerals and melts. Strength and viscosity decrease, diffusion rate and electrical conductivity increase, seismic waves attenuate and liquidus temperatures are lowered by the addition of water. The effects make water one of the most active components of any geological system with implications for the evolution and dynamics of the earth.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406200).
文摘Cubic boron nitride and hexagonal boron nitride are the two predominant crystalline structures of boron nitride.They can interconvert under varying pressure and temperature conditions.However,this transformation requires overcoming significant potential barriers in dynamics,which poses great difficulty in determining the c-BN/h-BN phase boundary.This study used high-pressure in situ differential thermal measurements to ascertain the temperature of h-BN/c-BN conversion within the commonly used pressure range(3-6 GPa)for the industrial synthesis of c-BN to constrain the P-T phase boundary of h-BN/c-BN in the pressure-temperature range as much as possible.Based on the analysis of the experimental data,it is determined that the relationship between pressure and temperature conforms to the following equation:P=a+1/bT.Here,P denotes the pressure(GPa)and T is the temperature(K).The coefficients are a=-3.8±0.8 GPa and b=229.8±17.1 GPa/K.These findings call into question existing high-pressure and high-temperature phase diagrams of boron nitride,which seem to overstate the phase boundary temperature between c-BN and h-BN.The BN phase diagram obtained from this study can provide critical temperature and pressure condition guidance for the industrial synthesis of c-BN,thus optimizing synthesis efficiency and product performance.
基金DRDO(TBR-1251)for funding and awarding the Project
文摘This work describes thermal decomposition behaviour of plastic bonded explosives(PBXs) based on mixture of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX) and 2,4,6-triamino-1,3,5-trinitrobenzene(TATB)with Viton A as polymer binder. Thermal decomposition of PBXs was undertaken by applying simultaneous thermal analysis(STA) and differential scanning calorimetry(DSC) to investigate influence of the HMX amount on thermal behavior and its kinetics. Thermogravimetric analysis(TGA) indicated that the thermal decomposition of PBXs based on mixture of HMX and TATB was occurred in a three-steps. The first step was mainly due to decomposition of HMX. The second step was ascribed due to decomposition of TATB, while the third step was occurred due to decomposition of the polymer matrices. The thermal decomposition % was increased with increasing HMX amount. The kinetics related to thermal decomposition were investigated under non-isothermal for a single heating rate measurement. The variation in the activation energy of PBXs based on mixture of HMX and TATB was observed with varying the HMX amount. The kinetics from the results of TGA data at various heating rates under non-isothermal conditions were also calculated by Flynn—Wall—Ozawa(FWO) and Kissinger-Akahira-Sunose(KAS)methods. The activation energies calculated by employing FWO method were very close to those obtained by KAS method. The mean activation energy calculated by FWO and KAS methods was also a good agreement with the activation energy obtained from single heating rate measurement in the first step decomposition.
基金Project supported by the Major State Basic Research Development Program of China (973 Program)(No.2005-CB121102)State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau of China (No.10501-138)
文摘Developing degradable films is an important means for resolving the problem of film pollution; however, in recent years, there have been only few studies related to the thermal analysis of degradable plastic films. This research detailed the composition and pyrolysis of one kind of ordinary and three kinds of degradable plastic films using the differential thermal analysis (DTA) technique. The results showed that degradable films and ordinary film had similar DTA curves, which reflected their similar compositions; however, small differences were measured, which were due to the added constituents of the degradable films. The pyrolysis reaction orders of each film were about 0.93. The pyrolysis activation energies and pre-exponential factors followed the order of ordinary film 〉 photodegradable film 〉 photodegradable calcium carbonate film 〉 biodegradable film. The results of this research laid the foundation for new theories for harnessing soil pollution caused by plastic films.