Improving thermostability of an enzyme can accelerate the relevant chemical reaction. Thus, the analysis and prediction of thermophilic proteins are conducive to protein engineering and enzyme design. In this study, a...Improving thermostability of an enzyme can accelerate the relevant chemical reaction. Thus, the analysis and prediction of thermophilic proteins are conducive to protein engineering and enzyme design. In this study, a novel method based on two-step discrimination was proposed to distinguish between thermophilic and non-thermophilic proteins. The model was rigorously benchmarked on an objective dataset including 915 thermophilic proteins and 793 non-thermophilic proteins. Results showed that the over- all accuracy of our method is 94.44% in 5-fold cross-validation, which is higher than those of other published methods. We believe that the two-step discriminated strategy will become a promising method in the relevant field of protein bioinformatics.展开更多
文摘Improving thermostability of an enzyme can accelerate the relevant chemical reaction. Thus, the analysis and prediction of thermophilic proteins are conducive to protein engineering and enzyme design. In this study, a novel method based on two-step discrimination was proposed to distinguish between thermophilic and non-thermophilic proteins. The model was rigorously benchmarked on an objective dataset including 915 thermophilic proteins and 793 non-thermophilic proteins. Results showed that the over- all accuracy of our method is 94.44% in 5-fold cross-validation, which is higher than those of other published methods. We believe that the two-step discriminated strategy will become a promising method in the relevant field of protein bioinformatics.