期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Second Law Analysis of Magneto Radiative GO-MoS_(2)/H_(2)O–(CH_(2)OH)_(2) Hybrid Nanofluid 被引量:1
1
作者 Adnan Umar Khan +4 位作者 Naveed Ahmed Syed Tauseef Mohyud-Din Dumitru Baleanu Kottakkaran Sooppy Nisar Ilyas Khan 《Computers, Materials & Continua》 SCIE EI 2021年第7期213-228,共16页
Entropy Generation Optimization(EGO)attained huge interest of scientists and researchers due to its numerous applications comprised in mechanical engineering,air conditioners,heat engines,thermal machines,heat exchang... Entropy Generation Optimization(EGO)attained huge interest of scientists and researchers due to its numerous applications comprised in mechanical engineering,air conditioners,heat engines,thermal machines,heat exchange,refrigerators,heat pumps and substance mixing etc.Therefore,the study of radiative hybrid nanofluid(GO-MoS_(2)/C_(2)H_(6)O_(2)–H_(2)O)and the conventional nanofluid(MoS_(2)/C_(2)H_(6)O_(2)–H_(2)O)is conducted in the presence of Lorentz forces.The flow configuration is modeled between the parallel rotating plates in which the lower plate is permeable.The models which govern the flow in rotating system are solved numerically over the domain of interest and furnished the results for the temperature,entropy generation and thermophysical characteristics of the hybrid as well as conventional nanofluids,respectively.It is examined that the thermal profile intensifies against stronger thermal radiations and magnetic field.The surface of the plate is heated due to the imposed thermal radiations and magnetic field which cause the increment in the temperature.It is also observed that the temperature declines against more rotating plates.Further,the entropy production increases for more dissipative effects and declines against more magnetized fluid.Thermal conductivities of the hybrid nanofluid enhances promptly in comparison with regular liquid therefore,under consideration hybrid nanofluid is reliable for the heat transfer.Moreover,dominating thermal transport is perceived for the hybrid nanofluid which showed that hybrid suspension GO-MoS_(2)/C_(2)H_(6)O_(2)–H_(2)O is better for industrial,engineering and technological uses. 展开更多
关键词 Heat transfer thermal radiation Entropy Generation GO-MoS_(2)hybrid nanoparticles thermophysical characteristics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部