A base-free catalytic system for the aerobic oxidation of 5-hydroxymethyl-2-furfural was exploited by using Pt nanoparticles immobilized onto a thermoresponsive poly(acrylamide-co-acrylonitrile)-b-poly(N-vinylimidazol...A base-free catalytic system for the aerobic oxidation of 5-hydroxymethyl-2-furfural was exploited by using Pt nanoparticles immobilized onto a thermoresponsive poly(acrylamide-co-acrylonitrile)-b-poly(N-vinylimidazole)block copolymer,with an upper critical solution temperature of about 45°C.The Pt nanocatalysts were well-dispersed and highly active for the base-free oxidation of 5-hydroxymethyl-2-furfural by molecular oxygen in water,affording high yields of 2,5-furandicarboxylic acid(up to>99.9%).The imidazole groups in the block copolymer were conducive to the improvement of catalytic performance.Moreover,the catalysts could be easily separated and recovered based on their thermosensitivity by cooling the reaction system below the upper critical solution temperature.Good stability and reusability were observed over these copolymer-immobilized catalysts with no obvious decrease in catalytic activity in the five consecutive cycles.展开更多
Thermoresponsive biotinylated dendronized copolymers carrying dendritic oligoethylene glycol(OEG)pendants were prepared via free radical polymerization,and their protein recognitions based on biotin-avidin interacti...Thermoresponsive biotinylated dendronized copolymers carrying dendritic oligoethylene glycol(OEG)pendants were prepared via free radical polymerization,and their protein recognitions based on biotin-avidin interaction investigated.Both first(PG1) and second generation(PG2) dendronized copolymers were designed to examine possible thickness effects on the interaction between biotin and avidin.Inherited from the outstanding thermoresponsive properties from OEG dendrons,these biotinylated cylindrical copolymers show characteristic thermoresponsive behavior which provides an envelope to capture avidin through switching temperatures above or below their phase transition temperatures(T_(cp)s).Thus,the recognition of polymer-supported biotin with avidin was investigated with UV/vis spectroscopy and dynamic laser light scattering.In contrast to the case for PG1,the increased thickness for copolymer PG2 hinders partially and inhibits the recognition of biotin moieties with avidin either below or above its T_(cp).This demonstrates the significant architecture effects from dendronized polymers on the biotin moieties to shift onto periphery of the collapsed aggregates,which should be a prerequisite for protein recognition.These kinds of novel thermoresponsive copolymers may pave a way for the interesting biological applications in areas such as reversible activity control of enzyme or proteins,and for controlled delivery of drugs or genes.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.21203102)the Nankai University&Cangzhou Bohai New Area Institute of Green Chemical Engineering Fund(Grant No.NCC2020PY02)+2 种基金the Tianjin Municipal Natural Science Foundation(Grant No.17JCYBJC22600)the Innovative Team Project of Ministry of Education of China(IRT13R30)the Fundamental Research Funds for the Central Universities.
文摘A base-free catalytic system for the aerobic oxidation of 5-hydroxymethyl-2-furfural was exploited by using Pt nanoparticles immobilized onto a thermoresponsive poly(acrylamide-co-acrylonitrile)-b-poly(N-vinylimidazole)block copolymer,with an upper critical solution temperature of about 45°C.The Pt nanocatalysts were well-dispersed and highly active for the base-free oxidation of 5-hydroxymethyl-2-furfural by molecular oxygen in water,affording high yields of 2,5-furandicarboxylic acid(up to>99.9%).The imidazole groups in the block copolymer were conducive to the improvement of catalytic performance.Moreover,the catalysts could be easily separated and recovered based on their thermosensitivity by cooling the reaction system below the upper critical solution temperature.Good stability and reusability were observed over these copolymer-immobilized catalysts with no obvious decrease in catalytic activity in the five consecutive cycles.
基金the National Natural Science Foundation of China(Nos.21374058,21474060 and 21574078)the Ph.D. Programs Foundation of Ministry of Education of China(No 201331081100166)the Shanghai Rising-Star Program(No.16QA1401800)
文摘Thermoresponsive biotinylated dendronized copolymers carrying dendritic oligoethylene glycol(OEG)pendants were prepared via free radical polymerization,and their protein recognitions based on biotin-avidin interaction investigated.Both first(PG1) and second generation(PG2) dendronized copolymers were designed to examine possible thickness effects on the interaction between biotin and avidin.Inherited from the outstanding thermoresponsive properties from OEG dendrons,these biotinylated cylindrical copolymers show characteristic thermoresponsive behavior which provides an envelope to capture avidin through switching temperatures above or below their phase transition temperatures(T_(cp)s).Thus,the recognition of polymer-supported biotin with avidin was investigated with UV/vis spectroscopy and dynamic laser light scattering.In contrast to the case for PG1,the increased thickness for copolymer PG2 hinders partially and inhibits the recognition of biotin moieties with avidin either below or above its T_(cp).This demonstrates the significant architecture effects from dendronized polymers on the biotin moieties to shift onto periphery of the collapsed aggregates,which should be a prerequisite for protein recognition.These kinds of novel thermoresponsive copolymers may pave a way for the interesting biological applications in areas such as reversible activity control of enzyme or proteins,and for controlled delivery of drugs or genes.