期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Evaluation of embankment foundation creep in conditions of deep bedding of roof in permafrost soils
1
作者 Evgeny Ashpiz Lev Khrustalev 《Research in Cold and Arid Regions》 CSCD 2013年第5期534-539,共6页
Railroad operating experience in permafrost conditions has shown that deformations of embankments on thawing foun- dations last for a long time. After an initial period of heat settlement due to permafrost degradation... Railroad operating experience in permafrost conditions has shown that deformations of embankments on thawing foun- dations last for a long time. After an initial period of heat settlement due to permafrost degradation, the determining factor is the plastic flow of seasonal thawed soils of the foundation upper layer under the embankment. This paper provides a method to evaluate these deformations, and calculation examples using data from line sections of the Chum-Labytnangi Railway in northwestern Russia. It also discusses several methods of embankment stabilization, including the use of ver- tical thermosiphons. 展开更多
关键词 PERMAFROST RAILWAY plastic flow embankment stabilization methods thermosiphons
下载PDF
Modelling of a Two-Phase Thermosyphon Loop for Passive Air-Conditioning of a House in Hot and Dry Climate Countries 被引量:1
2
作者 Abdoulaye 1 Diallo Xavier Chesneau +1 位作者 Idrissa Diaby Djanfar El-Maktoume 《Energy and Power Engineering》 2021年第6期243-260,共18页
The two-phase thermosyphon loop is an efficient solution for space cooling. This paper presents the simulation results of numerical studies on the heat transfer and thermal performance of a two-phase thermosiphon loop... The two-phase thermosyphon loop is an efficient solution for space cooling. This paper presents the simulation results of numerical studies on the heat transfer and thermal performance of a two-phase thermosiphon loop for passive air-conditioning of a house. The fluid considered in this study is methanol, which is compatible with copper and is environmentally friendly. These numerical results show that the temperature at the evaporator wall drops from 23<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C to 13<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C and increases at the condenser. The solar flux density has a strong influence on the condenser temperature. The mass flow rates and masses at the evaporator and condenser increase with temperature. The variation of evaporating and condensing temperature affects the performance of the system. For a constant evaporating and condensing temperature of 2<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C and 29<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C, the COP is 0.77 and 0.84 respectively. With these results, the use of the two-phase thermosyphon loop in air conditioning is possible to obtain a thermal comfort of the occupants acceptable by the standards but with a large exchange surface of the evaporator. 展开更多
关键词 Two-Phase Thermosiphon Loop MODELLING Passive Air Conditioning Thermal Performance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部