This article examines the soft soil roadbed reinforcement technology for widened sections of highways in a specific project.It provides an overview of the project,the principles of soft soil roadbed reinforcement tech...This article examines the soft soil roadbed reinforcement technology for widened sections of highways in a specific project.It provides an overview of the project,the principles of soft soil roadbed reinforcement technology for wide sections,and its practical application.The analysis aims to offer guidance on applying soft soil roadbed wide section reinforcement technology and enhancing the overall quality of similar projects.展开更多
The silt soft soil in Nansha District of Guangzhou was the softest soft soil in China. It had the characteristics of high natural water content, high compressibility, long consolidation time, and complex layered distr...The silt soft soil in Nansha District of Guangzhou was the softest soft soil in China. It had the characteristics of high natural water content, high compressibility, long consolidation time, and complex layered distribution of soil layers. These characteristics formed the clogging characteristics of silt soft soil, which greatly increased the construction difficulty and hindered the construction progress. Therefore, based on the basic physical and mechanical properties of silt soft soil in Nansha District of Guangzhou, this paper evaluated the clogging characteristics of three silt soft soil areas in Nansha District of Guangzhou through long-term permeability test, and carried out scanning electron microscope test to explore the influence of different parameters and microstructure on the clogging difficulty of silt soft soil. The results showed that the silt soft soil Zone I and Zone II (shallow layer) in Nansha District of Guangzhou were divided into slight siltation levels, and the silt soft soil Zone III (deep layer) was mild siltation level. Large pores were widely distributed in shallow silt soft soil, while the continuity of large pores in deep silt soft soil was poor. The migration of fine particles that failed to establish contact with surrounding particles in the soil blocks the small pores of seepage and thus produces siltation.展开更多
The flow characteristics of foundation soils subjected to train loads can present engineering hazards in highspeed railways.In order to verify the feasibility of blending coarse sand in modifying soft subsoil,undraine...The flow characteristics of foundation soils subjected to train loads can present engineering hazards in highspeed railways.In order to verify the feasibility of blending coarse sand in modifying soft subsoil,undrained pulling sphere tests were carried out and the train loads were simulated through localized and cyclic vibration at various frequencies.Laboratory testing results indicate that the fl ow characteristics of soft soil can be signifi cantly enhanced by high-frequency vibration;meanwhile the continuous increase in fl ow characteristics caused by cyclic vibration may be an important reason for the long-term settlement of soft subsoil.The infl uence of sand content on fl ow characteristics is also studied in detail,and it is shown that the addition of coarse sand can weaken the fl ow characteristics of soft soil induced by sudden vibration at lower than 50 Hz.Under the condition of cyclic vibration,the growth of the fl ow characteristics of sand-clay mixtures is mainly caused by the fi rst-time vibration in the cycle,and the increase in sand content can make the fl ow characteristics present a faster convergent tendency.展开更多
This study uses Steel Slag Coarse Aggregate (SSCA) as a mixture replacement, preamble material to improve soft soils, which is economic, and has good effect environment. Recently, the development and utilization of by...This study uses Steel Slag Coarse Aggregate (SSCA) as a mixture replacement, preamble material to improve soft soils, which is economic, and has good effect environment. Recently, the development and utilization of by-product, waste and recycle materials must be studied and investigated as a source of improved material for soft soils as, an economic and good effect environmental. The study analyzes effects of both replaced mixtures, (SSCA) or (TSCA) on improved soil bearing capacity and expected settlement after verifying the model. Numerical modeling of the one of real store loaded strip using, PLAXIS, 2D, strain deformation behavior to achieve field visible and measured deformations of untreated soft soil. Numerical studies were devolved to investigate geomechanics parameters improved to compare between using (SSCA) or (TSCA) as, replacement mixture. Results demonstrate that using (SSCA) improved compressibility and strength of shallow soft soil layer significantly than using (TCSA) mixture, while (SSCA) improved strip footing ultimate bearing capacity, (UBC), by 84.4% compared with increase of 20.5% when using (TCSA) mixture at the same thickness. In addition, the study highlights the effective (SSCA) replacement thickness ranges between (0.65 ~ 0.80) footing width.展开更多
The reinforcement effects of geosynthetics in thick soft subsoil case and thin soft subsoil case are studied in this paper,and a Duncan Chang nonlinear numerical model based on the finite element method (FEM) is deve...The reinforcement effects of geosynthetics in thick soft subsoil case and thin soft subsoil case are studied in this paper,and a Duncan Chang nonlinear numerical model based on the finite element method (FEM) is developed.Moreover,an important conclusion that the thickness of soft subsoil affects greatly the geotechnical behavior of geosynthetic reinforced embankments is drawn.A series of embankment built on soft subsoil is calculated using the FEM program.The results of the computer program,such as the lateral displacements,settlements,and stress level and shear stresses in the subsoil,are presented in great detail and the comparison of those results disposes clearly the huge discrepancy of reinforce benefit between the thick subsoil embankment and thin subsoil embankment.Reinforcement mechanism of geosynthetics is also discussed in this paper and several conclusions are reached.This paper also gives recommendations for design.展开更多
A comparison between deep learning and standalone models in predicting the compaction parameters of soil is presented in this research.One hundred and ninety and fifty-three soil samples were randomly picked up from t...A comparison between deep learning and standalone models in predicting the compaction parameters of soil is presented in this research.One hundred and ninety and fifty-three soil samples were randomly picked up from two hundred and forty-three soil samples to create training and validation datasets,respectively.The performance and accuracy of the models were measured by root mean square error(RMSE),coefficient of determination(R2),Pearson product-moment correlation coefficient(r),mean absolute error(MAE),variance accounted for(VAF),mean absolute percentage error(MAPE),weighted mean absolute percentage error(WMAPE),a20-index,index of scatter(IOS),and index of agreement(IOA).Comparisons between standalone models demonstrate that the model MD 29 in Gaussian process regression(GPR)and model MD 101 in support vector machine(SVM)can achieve over 96%of accuracy in predicting the optimum moisture content(OMC)and maximum dry density(MDD)of soil,and outperformed other standalone models.The comparison between deep learning models shows that the models MD 46 and MD 146 in long short-term memory(LSTM)predict OMC and MDD with higher accuracy than ANN models.However,the LSTM models outperformed the GPR models in predicting the compaction parameters.The sensitivity analysis illustrates that fine content(FC),specific gravity(SG),and liquid limit(LL)highly influence the prediction of compaction parameters.展开更多
A wrap-faced embankment model on soft clay soil subjected to earthquake motion was investigated in this study.The study was conducted both experimentally using a shaking table and numerically using PLAXIS 3D software....A wrap-faced embankment model on soft clay soil subjected to earthquake motion was investigated in this study.The study was conducted both experimentally using a shaking table and numerically using PLAXIS 3D software.The amplification of acceleration,displacement,pore water pressure,and strain response were measured while varying input accelerations and surcharge pressures.Time histories of the Kobe record of the 1995 Hanshin earthquake were used as the input seismic motion.The input acceleration was 0.05 g,0.1 g,0.15 g,and 0.2 g,and different surcharge pressures were 0.70 kPa,1.12 kPa,and 1.72 kPa with relative density of Sylhet sand fixed to 48%.The output data from the shaking table tests and the numerical analysis performed through the PLAXIS 3D software were compared,and these findings were also compared with some earlier similar studies.The acceleration amplification,displacement,pore water pressure,and strain(%)changed along the elevation of the embankment and acceleration response increased with the increase in base acceleration.The increase was more noticeable at higher elevations.These findings enrich the knowledge of predicting the dynamic behavior of wrap-faced embankments and enable the design parameters to be adjusted more accurately.展开更多
In view of the collapse of a deep excavated foundation pit of the Xianghu subway underground station in Hangzhou of China,the main features of the accident are analyzed,and the induced factors of the accident are summ...In view of the collapse of a deep excavated foundation pit of the Xianghu subway underground station in Hangzhou of China,the main features of the accident are analyzed,and the induced factors of the accident are summarized. Then,a 3-D FEM analysis model is created to demonstrate the soil-support structures interaction system,and the effect of the main factors,such as the volume replacement ratio of the bottom soil reinforcing,the asymmetric ground overload,the embedded depth of the diaphragm wall,the shear strength of the bottom soils disturbed by the construction,and the excessive excavation of the bottom soil,are analyzed and compared. The results show that the ineffective original reinforcement plan for the bottom soft soil is the most prominent factor for the accident,and the disturbance effect of the deep excavation on the shear strength of the bottom soft soil is another significant factor for the accident. Meanwhile,if the reinforcement of the bottom soft soil is canceled,an appropriate extension of the diaphragm retaining walls to the under lying harder soil layer can also effectively prevent the collapse of the deep excavated foundation pit. In addition,the partly excessive excavation in the process has a great influence on the axial force of the most nearby horizontal support but few effect on the stability of the diaphragm wall. Thus,the excessive excavation of the bottom soils should not be the direct inducing factor for the accident. To the asymmetric ground overload,it should be the main factor inducing the different damage conditions of the diaphragm walls on different sides. According to the numerical modeling and actual engineering accident condition,the development process of the accident is also identified.展开更多
The behavior of sand drain was estimated so that the size of very large load-pressure could be eliminated by changing the configuration of the sand drain elements into sand wall.A 3D mathematical model was formulated ...The behavior of sand drain was estimated so that the size of very large load-pressure could be eliminated by changing the configuration of the sand drain elements into sand wall.A 3D mathematical model was formulated to transform the configuration of a sand drain into a sand wall to minimize or eliminate the excessive stress and primary settlement on the road base.This was barely considered in the past. According to soil mechanics theory and seepage characteristics of sand drain in road base foundations, a 3D sand drain element in FEM format was generated,and a matrix expression was formulated which was introduced into 3D Biot Consolidation展开更多
In this paper, the rupture characteristics of the overlaying soil with soft interlayer were studied by plane-strain finite element method. From the results, it can be shown that the existence of soft layer separates r...In this paper, the rupture characteristics of the overlaying soil with soft interlayer were studied by plane-strain finite element method. From the results, it can be shown that the existence of soft layer separates rupture process of the overlaying soil into two phases. The depth of a buried soft interlayer will influence the rupture process and the rupture range of the overlaying soil. The deeply buried soft interlayer would bring about a wider range of surface failure. In addition, the thickness of the soft layer also has effect on the rupture process and rupture range of the overlaying soil.展开更多
A new triaxial apparatus was designed and manufactured. It is able to applysurcharge and combined vacuum-surcharge pressures on soil samples, and allows for monitoring ofexcess pore-water pressure, axial strain or set...A new triaxial apparatus was designed and manufactured. It is able to applysurcharge and combined vacuum-surcharge pressures on soil samples, and allows for monitoring ofexcess pore-water pressure, axial strain or settlement, and volumetric strain during the process ofconsolidation. Tests were performed using the apparatus on undisturbed soft clayey soil samples,which were collected from Wenzhou, Zhejiang Province, China, at average natural water content 72. 5%. The consolidation behavior of theclay has no rigorous difference, whether it is consolidatedunder the vacuum, surcharge, or combined vacuum-surcharge preloading. The study shows that somephysical properties of the soft clayey soils are changed and mechanical properties are improved tosupport excessive loads transferred to the soil foundation due to construction.展开更多
The motion of pore water directly influences mechanical properties of soils, which are variable during creep. Accurate description of the evolution of mechanical properties of soils can help to reveal the internal beh...The motion of pore water directly influences mechanical properties of soils, which are variable during creep. Accurate description of the evolution of mechanical properties of soils can help to reveal the internal behavior of pore water. Based on the idea of using the fractional order to reflect mechanical properties of soils, a fractional creep model is proposed by introducing a variable-order fractional operator, and realized on a series of creep responses in soft soils. A comparative analysis illustrates that the evolution of mechanical properties, shown through the simulated results, exactly corresponds to the motion of pore water and the solid skeleton. This demonstrates that the proposed variable-order fractional model can be employed to characterize the evolution of mechanical properties of and the pore water motion in soft soils during creep. It is observed that the fractional order from the proposed model is related to the dissipation rate of pore water pressure.展开更多
The distribution of saturated soft clay is greatly wide in China. The current main measures adopted to deal with soft soil foundations may lead to environmental pollution, even some engineering accidents may happen on...The distribution of saturated soft clay is greatly wide in China. The current main measures adopted to deal with soft soil foundations may lead to environmental pollution, even some engineering accidents may happen on soft soil foundations. In order to solve engineering problems of saturated soft soil foundations well, researches of mechanical properties of them are necessary. One of the most important mechanical characteristics of saturated soft clay is its cyclic accumulative deformation under cyclic loadings. For saturated soft clay, the cyclic accumulative deformation is similar to the creep behavior under static loadings. Therefore, the cyclic accumulative deformation is equivalent to the creep, the number of loading cycles is seen as the time, and this study develops a practical method for predicting the cyclic accumulative deformation of saturated soft clay with the creep theory. The method is a pseudostatic elasto-plastic finite element method implemented by ABAQUS software. A fitted equation between cyclic accumulative strain and number of loading cycles and the empirical relationship of parameters of fitted equation were established with aseries of cyclic triaxial compression tests. Then with this empirical relationship of parameters, the method developed by this study was employed to predict the cyclic accumulative deformation under cyclic triaxial tension tests. Predicted results were in good agreement with test results, and the effectiveness of this method was thus validated for different stress states. The method was then applied in analyzing the cyclic accumulative deformation for soft soil foundation of a pile-supported wharf structure.展开更多
Construction issues of high-speed rail infrastructures have been increasingly concerned worldwide,of which the subgrade settlement in soft soil area becomes a particularly critical problem.Due to the high compressibil...Construction issues of high-speed rail infrastructures have been increasingly concerned worldwide,of which the subgrade settlement in soft soil area becomes a particularly critical problem.Due to the high compressibility and low permeability of soft soil,the post-construction settlement of the subgrade is extremely difficult to control in these regions,which seriously threatens the operation safety of high-speed trains.In this work,the significant issues of high-speed railway subgrades in soft soil regions are discussed.The theoretical and experimental studies on foundation treatment methods for ballasted and ballastless tracks are reviewed.The settlement evolution and the settlement control effect of different treatment methods are highlighted.Control technologies of subgrade differential settlement are subsequently briefly presented.Settlement calculation algorithms of foundations reinforced by different treatment methods are discussed in detail.The defects of existing prediction methods and the challenges faced in their practical applications are analyzed.Furthermore,the guidance on future improvement in control theories and technologies of subgrade settlement for high-speed railway lines and the corresponding challenges are provided.展开更多
In view of the characteristics of soft soil deep foundation pit for the construction and geotechnical characteristics of the special medium,it is difficult to calculate theoreti- cally accurately structural deformatio...In view of the characteristics of soft soil deep foundation pit for the construction and geotechnical characteristics of the special medium,it is difficult to calculate theoreti- cally accurately structural deformation of the foundation pit,so in the course of excavation on the construction of the information is particularly important.The analysis and compari- son of several popular non-linear forecasting methods,combined with the actual projects, set up a grey theoretical prediction model,time series forecasting model,improved neural network model to predict deformation of the foundation pit.The results show that the use of neural network to predict with high accuracy solution,it is the foundation deformation prediction effective way in underground works with good prospects.展开更多
The objective of this study was to examine the effect of biosurfactant on the sorption of phenanthrene (PHE) onto the original or HzO2-treated black loamy soil (typic isohumisols) and red sandy soil (typic ferral...The objective of this study was to examine the effect of biosurfactant on the sorption of phenanthrene (PHE) onto the original or HzO2-treated black loamy soil (typic isohumisols) and red sandy soil (typic ferralisols). The sorption isotherms were performed with the original and "soft" carbon-removed soils in the presence and absence of biosurfactant (200 mg/L). The sorption and degradation of biosurfactant were investigated. The result showed that organic matter played an important role in PHE sorption onto the black loamy and red sandy soils, and the PHE sorption isotherms on the "soft" carbon-removed soils exhibited more nonlinearity than those on the original soils. The values of partition coefficient (Kd) on the original black loamy soil with or without 200 mg/L biosurfactant were 181.6 and 494.5 mL/g, respectively. Correspondingly, in the red sandy soil, Kd was 246.4 and 212.8 mL/g in the presence or absence of biosurfactant, respectively. The changes of Kd suggested that biosurfactant inhibited PHE sorption onto the black loamy soil, but facilitated PHE sorption onto the red sandy soil. The nonlinearity of PHE sorption isotherm was decreased in the presence of biosurfactant. Site specific sorption might occur during PHE sorption onto both the original and the "soft" carbon-removed soils in the presence of biosurfactant. It was noted that biosurfactant could also be sorbed onto soils. The maximal sorption capacity of the red sandy soil for biosurfactant was (76.9 ± 0.007) μg/g, which was 1.31 times that of black loamy soil. Biosurfactant was degraded quickly in the two selected soils, and 92% of biosurfactant were mineralized throughout the incubation experiment for 7 d. It implied that biosurfactant should be added frequently when the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils was conducted through PAH desorption approach facilitated by biosurfactant.展开更多
Soft clays are problematic soils as they present high compressibility and low shear strength.There are several methods for improving in situ conditions of soft clays.Based on the geotechnical problem’s geometry and c...Soft clays are problematic soils as they present high compressibility and low shear strength.There are several methods for improving in situ conditions of soft clays.Based on the geotechnical problem’s geometry and characteristics,the in situ conditions may require reinforcement to restrain instability and construction settlements.Granular columns reinforced by geosynthetic material are widely used to reduce settlements of embankments on soft clays.They also accelerate the consolidation rate by reducing the drainage path’s length and increasing the foundation soil’s bearing capacity.In this study,the performance of encased and layered granular columns in soft clay is investigated and discussed.The numerical results show the significance of geosynthetic stiffness and the column length on the embankment settlements.Furthermore,the results show that granular columns may play an important role in dissipating the excess pore water pressures and accelerating the consolidation settlements of embankments on soft clays.展开更多
Characteristic of cyclic loading due to passing wheels is associated with one-way loading without stress reversal,which includes a simultaneous cyclic variation of vertical normal stress and horizontal normal stress l...Characteristic of cyclic loading due to passing wheels is associated with one-way loading without stress reversal,which includes a simultaneous cyclic variation of vertical normal stress and horizontal normal stress lasting for a long period of time and generally takes place in partially-drained conditions.Therefore,it is of great practical relevance to study the deformation behaviour according to the characteristic of traffic loading.In this work,a series of one-way stress-controlled cyclic triaxial tests with a simultaneous variation of the vertical and horizontal stress components during cyclic loading were conducted to investigate the deformation behaviour of natural K_0-consolidated soft clay in partially-drained conditions.Test results demonstrate that not only the deviator part of the stress rules accumulation but also the volumetric part significantly contributes.While the deviator part of the stress amplitude is held constant,the increase amplitude of cyclic confining pressure will promote the development of both permanent volumetric strain and axial strain significantly.Furthermore,the effects of cyclic confining pressure on the deformation of natural K_0-consolidated soft clay was quantified.Finally,an empirical formula for permanent axial strain considering the effects of cyclic confining pressure was proposed which can be used for feasibility studies or for the preliminary design of foundations on K_0-consolidated soft clay subjected to traffic loading.展开更多
Finite element method was performed to investigate the influences of beam stiffness, foundation width and cushion thickness on the beating capacity of beam foundation on underlying weak laminated clay. The comparison ...Finite element method was performed to investigate the influences of beam stiffness, foundation width and cushion thickness on the beating capacity of beam foundation on underlying weak laminated clay. The comparison between numerical results and results from field test including plate-bearing test and foundation settlement observation shows reasonable agreement. According to the numerical results, the beam width, length, cross section and cushion thickness were optimized. The results show that the stresses in subgrade soil decrease greatly with increasing the cushion thickness and width of foundation. However, the foundation settlement and influencing depth of displacement also increase correspondingly under conditions of relatively thinner cushion thickness. For the foundations on underlying weak layer, increasing foundation width merely might be inadequate for improving the bearing capacity, and the appropriate width and cushion thickness depend on the response of subgrade. A comparison between rigid and flexible beams was also discussed. The influence of a flexible beam foundation on subgrade is relatively smaller under the same loading conditions, and the flexible beam foundation appears more adaptable to various subgrades. The proposed flexible beam foundation was adopted in engineering. According to the calculation results, beam width of 2.4 m and cushion thickness of 0.8 m are proposed, and a flexible beam foundation is applied in the optimized design, which is confirmed reasonable by the actual engineering.展开更多
文摘This article examines the soft soil roadbed reinforcement technology for widened sections of highways in a specific project.It provides an overview of the project,the principles of soft soil roadbed reinforcement technology for wide sections,and its practical application.The analysis aims to offer guidance on applying soft soil roadbed wide section reinforcement technology and enhancing the overall quality of similar projects.
文摘The silt soft soil in Nansha District of Guangzhou was the softest soft soil in China. It had the characteristics of high natural water content, high compressibility, long consolidation time, and complex layered distribution of soil layers. These characteristics formed the clogging characteristics of silt soft soil, which greatly increased the construction difficulty and hindered the construction progress. Therefore, based on the basic physical and mechanical properties of silt soft soil in Nansha District of Guangzhou, this paper evaluated the clogging characteristics of three silt soft soil areas in Nansha District of Guangzhou through long-term permeability test, and carried out scanning electron microscope test to explore the influence of different parameters and microstructure on the clogging difficulty of silt soft soil. The results showed that the silt soft soil Zone I and Zone II (shallow layer) in Nansha District of Guangzhou were divided into slight siltation levels, and the silt soft soil Zone III (deep layer) was mild siltation level. Large pores were widely distributed in shallow silt soft soil, while the continuity of large pores in deep silt soft soil was poor. The migration of fine particles that failed to establish contact with surrounding particles in the soil blocks the small pores of seepage and thus produces siltation.
基金Natural Science Foundation of Jiangsu Province of China under Grant No.BK2012810
文摘The flow characteristics of foundation soils subjected to train loads can present engineering hazards in highspeed railways.In order to verify the feasibility of blending coarse sand in modifying soft subsoil,undrained pulling sphere tests were carried out and the train loads were simulated through localized and cyclic vibration at various frequencies.Laboratory testing results indicate that the fl ow characteristics of soft soil can be signifi cantly enhanced by high-frequency vibration;meanwhile the continuous increase in fl ow characteristics caused by cyclic vibration may be an important reason for the long-term settlement of soft subsoil.The infl uence of sand content on fl ow characteristics is also studied in detail,and it is shown that the addition of coarse sand can weaken the fl ow characteristics of soft soil induced by sudden vibration at lower than 50 Hz.Under the condition of cyclic vibration,the growth of the fl ow characteristics of sand-clay mixtures is mainly caused by the fi rst-time vibration in the cycle,and the increase in sand content can make the fl ow characteristics present a faster convergent tendency.
文摘This study uses Steel Slag Coarse Aggregate (SSCA) as a mixture replacement, preamble material to improve soft soils, which is economic, and has good effect environment. Recently, the development and utilization of by-product, waste and recycle materials must be studied and investigated as a source of improved material for soft soils as, an economic and good effect environmental. The study analyzes effects of both replaced mixtures, (SSCA) or (TSCA) on improved soil bearing capacity and expected settlement after verifying the model. Numerical modeling of the one of real store loaded strip using, PLAXIS, 2D, strain deformation behavior to achieve field visible and measured deformations of untreated soft soil. Numerical studies were devolved to investigate geomechanics parameters improved to compare between using (SSCA) or (TSCA) as, replacement mixture. Results demonstrate that using (SSCA) improved compressibility and strength of shallow soft soil layer significantly than using (TCSA) mixture, while (SSCA) improved strip footing ultimate bearing capacity, (UBC), by 84.4% compared with increase of 20.5% when using (TCSA) mixture at the same thickness. In addition, the study highlights the effective (SSCA) replacement thickness ranges between (0.65 ~ 0.80) footing width.
文摘The reinforcement effects of geosynthetics in thick soft subsoil case and thin soft subsoil case are studied in this paper,and a Duncan Chang nonlinear numerical model based on the finite element method (FEM) is developed.Moreover,an important conclusion that the thickness of soft subsoil affects greatly the geotechnical behavior of geosynthetic reinforced embankments is drawn.A series of embankment built on soft subsoil is calculated using the FEM program.The results of the computer program,such as the lateral displacements,settlements,and stress level and shear stresses in the subsoil,are presented in great detail and the comparison of those results disposes clearly the huge discrepancy of reinforce benefit between the thick subsoil embankment and thin subsoil embankment.Reinforcement mechanism of geosynthetics is also discussed in this paper and several conclusions are reached.This paper also gives recommendations for design.
文摘A comparison between deep learning and standalone models in predicting the compaction parameters of soil is presented in this research.One hundred and ninety and fifty-three soil samples were randomly picked up from two hundred and forty-three soil samples to create training and validation datasets,respectively.The performance and accuracy of the models were measured by root mean square error(RMSE),coefficient of determination(R2),Pearson product-moment correlation coefficient(r),mean absolute error(MAE),variance accounted for(VAF),mean absolute percentage error(MAPE),weighted mean absolute percentage error(WMAPE),a20-index,index of scatter(IOS),and index of agreement(IOA).Comparisons between standalone models demonstrate that the model MD 29 in Gaussian process regression(GPR)and model MD 101 in support vector machine(SVM)can achieve over 96%of accuracy in predicting the optimum moisture content(OMC)and maximum dry density(MDD)of soil,and outperformed other standalone models.The comparison between deep learning models shows that the models MD 46 and MD 146 in long short-term memory(LSTM)predict OMC and MDD with higher accuracy than ANN models.However,the LSTM models outperformed the GPR models in predicting the compaction parameters.The sensitivity analysis illustrates that fine content(FC),specific gravity(SG),and liquid limit(LL)highly influence the prediction of compaction parameters.
文摘A wrap-faced embankment model on soft clay soil subjected to earthquake motion was investigated in this study.The study was conducted both experimentally using a shaking table and numerically using PLAXIS 3D software.The amplification of acceleration,displacement,pore water pressure,and strain response were measured while varying input accelerations and surcharge pressures.Time histories of the Kobe record of the 1995 Hanshin earthquake were used as the input seismic motion.The input acceleration was 0.05 g,0.1 g,0.15 g,and 0.2 g,and different surcharge pressures were 0.70 kPa,1.12 kPa,and 1.72 kPa with relative density of Sylhet sand fixed to 48%.The output data from the shaking table tests and the numerical analysis performed through the PLAXIS 3D software were compared,and these findings were also compared with some earlier similar studies.The acceleration amplification,displacement,pore water pressure,and strain(%)changed along the elevation of the embankment and acceleration response increased with the increase in base acceleration.The increase was more noticeable at higher elevations.These findings enrich the knowledge of predicting the dynamic behavior of wrap-faced embankments and enable the design parameters to be adjusted more accurately.
基金funded by the China Postdoctoral Science Foundation(No. 2014M551909)the Jiangsu Geology & Mineral Exploration Bureau’s Science Foundation(No.2013-KY-13)
文摘In view of the collapse of a deep excavated foundation pit of the Xianghu subway underground station in Hangzhou of China,the main features of the accident are analyzed,and the induced factors of the accident are summarized. Then,a 3-D FEM analysis model is created to demonstrate the soil-support structures interaction system,and the effect of the main factors,such as the volume replacement ratio of the bottom soil reinforcing,the asymmetric ground overload,the embedded depth of the diaphragm wall,the shear strength of the bottom soils disturbed by the construction,and the excessive excavation of the bottom soil,are analyzed and compared. The results show that the ineffective original reinforcement plan for the bottom soft soil is the most prominent factor for the accident,and the disturbance effect of the deep excavation on the shear strength of the bottom soft soil is another significant factor for the accident. Meanwhile,if the reinforcement of the bottom soft soil is canceled,an appropriate extension of the diaphragm retaining walls to the under lying harder soil layer can also effectively prevent the collapse of the deep excavated foundation pit. In addition,the partly excessive excavation in the process has a great influence on the axial force of the most nearby horizontal support but few effect on the stability of the diaphragm wall. Thus,the excessive excavation of the bottom soils should not be the direct inducing factor for the accident. To the asymmetric ground overload,it should be the main factor inducing the different damage conditions of the diaphragm walls on different sides. According to the numerical modeling and actual engineering accident condition,the development process of the accident is also identified.
文摘The behavior of sand drain was estimated so that the size of very large load-pressure could be eliminated by changing the configuration of the sand drain elements into sand wall.A 3D mathematical model was formulated to transform the configuration of a sand drain into a sand wall to minimize or eliminate the excessive stress and primary settlement on the road base.This was barely considered in the past. According to soil mechanics theory and seepage characteristics of sand drain in road base foundations, a 3D sand drain element in FEM format was generated,and a matrix expression was formulated which was introduced into 3D Biot Consolidation
基金National Natural Science Foundation of China (50078049).
文摘In this paper, the rupture characteristics of the overlaying soil with soft interlayer were studied by plane-strain finite element method. From the results, it can be shown that the existence of soft layer separates rupture process of the overlaying soil into two phases. The depth of a buried soft interlayer will influence the rupture process and the rupture range of the overlaying soil. The deeply buried soft interlayer would bring about a wider range of surface failure. In addition, the thickness of the soft layer also has effect on the rupture process and rupture range of the overlaying soil.
文摘A new triaxial apparatus was designed and manufactured. It is able to applysurcharge and combined vacuum-surcharge pressures on soil samples, and allows for monitoring ofexcess pore-water pressure, axial strain or settlement, and volumetric strain during the process ofconsolidation. Tests were performed using the apparatus on undisturbed soft clayey soil samples,which were collected from Wenzhou, Zhejiang Province, China, at average natural water content 72. 5%. The consolidation behavior of theclay has no rigorous difference, whether it is consolidatedunder the vacuum, surcharge, or combined vacuum-surcharge preloading. The study shows that somephysical properties of the soft clayey soils are changed and mechanical properties are improved tosupport excessive loads transferred to the soil foundation due to construction.
基金supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK2012810)the Fundamental Research Funds for the Central Universities(Grant No.2009B15114)
文摘The motion of pore water directly influences mechanical properties of soils, which are variable during creep. Accurate description of the evolution of mechanical properties of soils can help to reveal the internal behavior of pore water. Based on the idea of using the fractional order to reflect mechanical properties of soils, a fractional creep model is proposed by introducing a variable-order fractional operator, and realized on a series of creep responses in soft soils. A comparative analysis illustrates that the evolution of mechanical properties, shown through the simulated results, exactly corresponds to the motion of pore water and the solid skeleton. This demonstrates that the proposed variable-order fractional model can be employed to characterize the evolution of mechanical properties of and the pore water motion in soft soils during creep. It is observed that the fractional order from the proposed model is related to the dissipation rate of pore water pressure.
基金funded by Science Commission Fund of Chongqing(Grant No.cstc2016jcyj A0123)Open Fund of Key Laboratory of regulation technology for inlandwaterway in transportation industry of Chongqing Jiaotong University (Grant No. NHHD-201506)
文摘The distribution of saturated soft clay is greatly wide in China. The current main measures adopted to deal with soft soil foundations may lead to environmental pollution, even some engineering accidents may happen on soft soil foundations. In order to solve engineering problems of saturated soft soil foundations well, researches of mechanical properties of them are necessary. One of the most important mechanical characteristics of saturated soft clay is its cyclic accumulative deformation under cyclic loadings. For saturated soft clay, the cyclic accumulative deformation is similar to the creep behavior under static loadings. Therefore, the cyclic accumulative deformation is equivalent to the creep, the number of loading cycles is seen as the time, and this study develops a practical method for predicting the cyclic accumulative deformation of saturated soft clay with the creep theory. The method is a pseudostatic elasto-plastic finite element method implemented by ABAQUS software. A fitted equation between cyclic accumulative strain and number of loading cycles and the empirical relationship of parameters of fitted equation were established with aseries of cyclic triaxial compression tests. Then with this empirical relationship of parameters, the method developed by this study was employed to predict the cyclic accumulative deformation under cyclic triaxial tension tests. Predicted results were in good agreement with test results, and the effectiveness of this method was thus validated for different stress states. The method was then applied in analyzing the cyclic accumulative deformation for soft soil foundation of a pile-supported wharf structure.
基金National Natural Science Foundation of China(No.51778485).
文摘Construction issues of high-speed rail infrastructures have been increasingly concerned worldwide,of which the subgrade settlement in soft soil area becomes a particularly critical problem.Due to the high compressibility and low permeability of soft soil,the post-construction settlement of the subgrade is extremely difficult to control in these regions,which seriously threatens the operation safety of high-speed trains.In this work,the significant issues of high-speed railway subgrades in soft soil regions are discussed.The theoretical and experimental studies on foundation treatment methods for ballasted and ballastless tracks are reviewed.The settlement evolution and the settlement control effect of different treatment methods are highlighted.Control technologies of subgrade differential settlement are subsequently briefly presented.Settlement calculation algorithms of foundations reinforced by different treatment methods are discussed in detail.The defects of existing prediction methods and the challenges faced in their practical applications are analyzed.Furthermore,the guidance on future improvement in control theories and technologies of subgrade settlement for high-speed railway lines and the corresponding challenges are provided.
基金the Educational Department of Liaoning Province Through Scientific Research Project(20060051)National Natural Science Foundation of China(50604009)Universities Excellent Talents Support Plan to Train Foundation of Liaoning(RC-04-13)
文摘In view of the characteristics of soft soil deep foundation pit for the construction and geotechnical characteristics of the special medium,it is difficult to calculate theoreti- cally accurately structural deformation of the foundation pit,so in the course of excavation on the construction of the information is particularly important.The analysis and compari- son of several popular non-linear forecasting methods,combined with the actual projects, set up a grey theoretical prediction model,time series forecasting model,improved neural network model to predict deformation of the foundation pit.The results show that the use of neural network to predict with high accuracy solution,it is the foundation deformation prediction effective way in underground works with good prospects.
基金supported by the National Hi-Tech Research and Development Program (863) of China (No2007AA061101)the National Natural Scientific Foun-dation of China (No 20377024)
文摘The objective of this study was to examine the effect of biosurfactant on the sorption of phenanthrene (PHE) onto the original or HzO2-treated black loamy soil (typic isohumisols) and red sandy soil (typic ferralisols). The sorption isotherms were performed with the original and "soft" carbon-removed soils in the presence and absence of biosurfactant (200 mg/L). The sorption and degradation of biosurfactant were investigated. The result showed that organic matter played an important role in PHE sorption onto the black loamy and red sandy soils, and the PHE sorption isotherms on the "soft" carbon-removed soils exhibited more nonlinearity than those on the original soils. The values of partition coefficient (Kd) on the original black loamy soil with or without 200 mg/L biosurfactant were 181.6 and 494.5 mL/g, respectively. Correspondingly, in the red sandy soil, Kd was 246.4 and 212.8 mL/g in the presence or absence of biosurfactant, respectively. The changes of Kd suggested that biosurfactant inhibited PHE sorption onto the black loamy soil, but facilitated PHE sorption onto the red sandy soil. The nonlinearity of PHE sorption isotherm was decreased in the presence of biosurfactant. Site specific sorption might occur during PHE sorption onto both the original and the "soft" carbon-removed soils in the presence of biosurfactant. It was noted that biosurfactant could also be sorbed onto soils. The maximal sorption capacity of the red sandy soil for biosurfactant was (76.9 ± 0.007) μg/g, which was 1.31 times that of black loamy soil. Biosurfactant was degraded quickly in the two selected soils, and 92% of biosurfactant were mineralized throughout the incubation experiment for 7 d. It implied that biosurfactant should be added frequently when the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils was conducted through PAH desorption approach facilitated by biosurfactant.
文摘Soft clays are problematic soils as they present high compressibility and low shear strength.There are several methods for improving in situ conditions of soft clays.Based on the geotechnical problem’s geometry and characteristics,the in situ conditions may require reinforcement to restrain instability and construction settlements.Granular columns reinforced by geosynthetic material are widely used to reduce settlements of embankments on soft clays.They also accelerate the consolidation rate by reducing the drainage path’s length and increasing the foundation soil’s bearing capacity.In this study,the performance of encased and layered granular columns in soft clay is investigated and discussed.The numerical results show the significance of geosynthetic stiffness and the column length on the embankment settlements.Furthermore,the results show that granular columns may play an important role in dissipating the excess pore water pressures and accelerating the consolidation settlements of embankments on soft clays.
基金Projects(51238009,51578426,51308420)supported by the National Natural Science Foundation of China
文摘Characteristic of cyclic loading due to passing wheels is associated with one-way loading without stress reversal,which includes a simultaneous cyclic variation of vertical normal stress and horizontal normal stress lasting for a long period of time and generally takes place in partially-drained conditions.Therefore,it is of great practical relevance to study the deformation behaviour according to the characteristic of traffic loading.In this work,a series of one-way stress-controlled cyclic triaxial tests with a simultaneous variation of the vertical and horizontal stress components during cyclic loading were conducted to investigate the deformation behaviour of natural K_0-consolidated soft clay in partially-drained conditions.Test results demonstrate that not only the deviator part of the stress rules accumulation but also the volumetric part significantly contributes.While the deviator part of the stress amplitude is held constant,the increase amplitude of cyclic confining pressure will promote the development of both permanent volumetric strain and axial strain significantly.Furthermore,the effects of cyclic confining pressure on the deformation of natural K_0-consolidated soft clay was quantified.Finally,an empirical formula for permanent axial strain considering the effects of cyclic confining pressure was proposed which can be used for feasibility studies or for the preliminary design of foundations on K_0-consolidated soft clay subjected to traffic loading.
基金Projects(50778181, 51178472) supported by the National Natural Science Foundation of China Project(2007045) supported by the Transportation Department of Hunan Province,China
文摘Finite element method was performed to investigate the influences of beam stiffness, foundation width and cushion thickness on the beating capacity of beam foundation on underlying weak laminated clay. The comparison between numerical results and results from field test including plate-bearing test and foundation settlement observation shows reasonable agreement. According to the numerical results, the beam width, length, cross section and cushion thickness were optimized. The results show that the stresses in subgrade soil decrease greatly with increasing the cushion thickness and width of foundation. However, the foundation settlement and influencing depth of displacement also increase correspondingly under conditions of relatively thinner cushion thickness. For the foundations on underlying weak layer, increasing foundation width merely might be inadequate for improving the bearing capacity, and the appropriate width and cushion thickness depend on the response of subgrade. A comparison between rigid and flexible beams was also discussed. The influence of a flexible beam foundation on subgrade is relatively smaller under the same loading conditions, and the flexible beam foundation appears more adaptable to various subgrades. The proposed flexible beam foundation was adopted in engineering. According to the calculation results, beam width of 2.4 m and cushion thickness of 0.8 m are proposed, and a flexible beam foundation is applied in the optimized design, which is confirmed reasonable by the actual engineering.