In this paper a stochastic boundary element method (SEEM) is developed to analyze moderately thick plates with random material parameters and random thickness. Based on the Taylor series expansion, the boundary integr...In this paper a stochastic boundary element method (SEEM) is developed to analyze moderately thick plates with random material parameters and random thickness. Based on the Taylor series expansion, the boundary integration equations concerning the mean and deviation of the generalized displacements are derived, respectively. It is found that the randomness of material parameters is equivalent to a random load, so the mean and covariance matrices of unknown generalized boundary displacements and tractions can be obtained. Furthermore, the mean and covariance of generalized displacements and forces at internal points can also be obtained. A numerical example has been worked out with the method proposed and necessary analysis is made for the results.展开更多
In this paper,a method of constructing displacement-based elment for thick/thin plates is devel- oped by using the technique of generalized compatibility,and a rectangular displacement-based element with 12 degrees of...In this paper,a method of constructing displacement-based elment for thick/thin plates is devel- oped by using the technique of generalized compatibility,and a rectangular displacement-based element with 12 degrees of freedom for thick/thin plates is presented.This method enjoys a good accuracy with simple formulation and is free of shear- locking as the thickness of the plate approaches zero.展开更多
In this paper; some deformation patterns defined by differential equations of the elastic system are introduced into the revised functional for the incompatible elements. And therefore the rational FEM, which is perfe...In this paper; some deformation patterns defined by differential equations of the elastic system are introduced into the revised functional for the incompatible elements. And therefore the rational FEM, which is perfect combination of the analytic methods and numeric methods, has been presented. This new approach satisfies not only the mechanical requirement of the elements but also the geometric requirement of the complex structures. What's more the quadrilateral element obtained accordingly for the elastic bending of thick plates demonstrates such advantages as high precision for computation and availability of accurate integration for stiffness matrices.展开更多
In this paper, based on the step reduction method and exaet analytic method, a new method, theexacl element method for constructing finite element, is presented. Since the near method doesn't need varialional prin...In this paper, based on the step reduction method and exaet analytic method, a new method, theexacl element method for constructing finite element, is presented. Since the near method doesn't need varialional principle, it can he applied to solve nun-positive and positive definite partial differcntial equations with arbitral varutble coefficients. By this method, a triangle noncompatible element with 15 degrees of freedom is derived to solve the bending of nonhomogenous Reissner's plate. Because the displacement parameters at the nodal point only contain deflection and rotation angle, it is convenient to deal with arbitrary boundary conditions. In this paper, the convergcnceof displacement and stress resultants is proved. The element obtained by the present method can be used for thin and thick plates as well, hour numerical examples are given at the end of this paper, which indicates that we can obtain satisfactory results and have higher numerical precision.展开更多
文摘In this paper a stochastic boundary element method (SEEM) is developed to analyze moderately thick plates with random material parameters and random thickness. Based on the Taylor series expansion, the boundary integration equations concerning the mean and deviation of the generalized displacements are derived, respectively. It is found that the randomness of material parameters is equivalent to a random load, so the mean and covariance matrices of unknown generalized boundary displacements and tractions can be obtained. Furthermore, the mean and covariance of generalized displacements and forces at internal points can also be obtained. A numerical example has been worked out with the method proposed and necessary analysis is made for the results.
基金The project supported by National Natural Science Foundation of China through Grant No.59208075
文摘In this paper,a method of constructing displacement-based elment for thick/thin plates is devel- oped by using the technique of generalized compatibility,and a rectangular displacement-based element with 12 degrees of freedom for thick/thin plates is presented.This method enjoys a good accuracy with simple formulation and is free of shear- locking as the thickness of the plate approaches zero.
文摘In this paper; some deformation patterns defined by differential equations of the elastic system are introduced into the revised functional for the incompatible elements. And therefore the rational FEM, which is perfect combination of the analytic methods and numeric methods, has been presented. This new approach satisfies not only the mechanical requirement of the elements but also the geometric requirement of the complex structures. What's more the quadrilateral element obtained accordingly for the elastic bending of thick plates demonstrates such advantages as high precision for computation and availability of accurate integration for stiffness matrices.
文摘In this paper, based on the step reduction method and exaet analytic method, a new method, theexacl element method for constructing finite element, is presented. Since the near method doesn't need varialional principle, it can he applied to solve nun-positive and positive definite partial differcntial equations with arbitral varutble coefficients. By this method, a triangle noncompatible element with 15 degrees of freedom is derived to solve the bending of nonhomogenous Reissner's plate. Because the displacement parameters at the nodal point only contain deflection and rotation angle, it is convenient to deal with arbitrary boundary conditions. In this paper, the convergcnceof displacement and stress resultants is proved. The element obtained by the present method can be used for thin and thick plates as well, hour numerical examples are given at the end of this paper, which indicates that we can obtain satisfactory results and have higher numerical precision.