The middle Jurassic Zhiluo Formation in the Dongsheng is comprised of a big set of green sandstone/mudstone with most of uranium orebodies occurring in close proximity to its footwall.By synthesizing field observation...The middle Jurassic Zhiluo Formation in the Dongsheng is comprised of a big set of green sandstone/mudstone with most of uranium orebodies occurring in close proximity to its footwall.By synthesizing field observations,region analysis,data collected from previous coal and uranium borehole,a regional north-south geological profile across the entire orefield is conducted.Experiments on sandstone/mudstone including rock mineral identification,clastic micromorphology and element geochemistry were carried out.Information from the geological profile indicates that green sandstone/mudstone is widely present in a stable horizon with clear boundaries to the country rock.Microscopic observations and geochemical data on sandstone/mudstone exhibit similar mineral composition with almost identical slightly flat,minor Eu enriched,Ce depleted chondrite-normalized REE patterns.Furthermore,the green clay membrane of the clasts has a complex composition containing chlorite/smectite,green smectite,chlorite,and green kaolinite,with elements including Fe,Mg,Si,and Al.These above results indicate that the green sandstone/mudstone underwent resemble sedimentary diagenetic processes as the country rock without transformation by large-scale regional fluid,while the existence of Fe2+-rich membrane is the main factor to the green sandstone/mudstone.Further concentration of the pre-enrichment uranium during diagenetic process led to the final formation for uranium deposits.The above studies are conducive to enrich the metallogenic mechanism of sandstone type uranium deposits and could provide certain reference for uranium exploration and deployment.展开更多
The distribution and intensity of tectonic fractures within geologic units are important to hydrocarbon exploration and development. Taken the Upper Triassic Yanchang Formation interbedded sandstone-mudstone in the Or...The distribution and intensity of tectonic fractures within geologic units are important to hydrocarbon exploration and development. Taken the Upper Triassic Yanchang Formation interbedded sandstone-mudstone in the Ordos Basin as an example, this study used the finite element method(FEM) based on geomechanical models to study the development of tectonic fractures. The results show that the sandstones tend to generate tectonic fractures more easily than mudstones with the same layer thickness, and the highest degree of tectonic fractures will be developed when the sandstone-mudstone thickness ratio is about 5.0. A possible explanation is proposed for the tectonic fracture development based on two important factors of rock brittleness and mechanical layer thickness. Generally, larger rock brittleness and thinner layer thickness will generate more tectonic fractures. In interbedded sandstone-mudstone formations, the rock brittleness increases with the increasing mechanical layer thickness, hence, these two factors will achieve a balance for the development of tectonic fractures when the sandstone-mudstone thickness ratio reaches a specific value, and the development degree of tectonic fractures is the highest at this value.展开更多
基金This work was financially and technically supported by National Key Basic Research Program(2015CB453000)of Ministry Science and TechnologyGeological Survey Projects(DD20160127 and DD20160128)from China Geological Surveythe International Geoscience Program(IGCP675)from UNESCO.
文摘The middle Jurassic Zhiluo Formation in the Dongsheng is comprised of a big set of green sandstone/mudstone with most of uranium orebodies occurring in close proximity to its footwall.By synthesizing field observations,region analysis,data collected from previous coal and uranium borehole,a regional north-south geological profile across the entire orefield is conducted.Experiments on sandstone/mudstone including rock mineral identification,clastic micromorphology and element geochemistry were carried out.Information from the geological profile indicates that green sandstone/mudstone is widely present in a stable horizon with clear boundaries to the country rock.Microscopic observations and geochemical data on sandstone/mudstone exhibit similar mineral composition with almost identical slightly flat,minor Eu enriched,Ce depleted chondrite-normalized REE patterns.Furthermore,the green clay membrane of the clasts has a complex composition containing chlorite/smectite,green smectite,chlorite,and green kaolinite,with elements including Fe,Mg,Si,and Al.These above results indicate that the green sandstone/mudstone underwent resemble sedimentary diagenetic processes as the country rock without transformation by large-scale regional fluid,while the existence of Fe2+-rich membrane is the main factor to the green sandstone/mudstone.Further concentration of the pre-enrichment uranium during diagenetic process led to the final formation for uranium deposits.The above studies are conducive to enrich the metallogenic mechanism of sandstone type uranium deposits and could provide certain reference for uranium exploration and deployment.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.2015QNA69)the State Key Laboratory of Continental Tectonics and Dynamics(No.K201406)the PetroChina Major Science and Technology Project(No.2011E-2602)
文摘The distribution and intensity of tectonic fractures within geologic units are important to hydrocarbon exploration and development. Taken the Upper Triassic Yanchang Formation interbedded sandstone-mudstone in the Ordos Basin as an example, this study used the finite element method(FEM) based on geomechanical models to study the development of tectonic fractures. The results show that the sandstones tend to generate tectonic fractures more easily than mudstones with the same layer thickness, and the highest degree of tectonic fractures will be developed when the sandstone-mudstone thickness ratio is about 5.0. A possible explanation is proposed for the tectonic fracture development based on two important factors of rock brittleness and mechanical layer thickness. Generally, larger rock brittleness and thinner layer thickness will generate more tectonic fractures. In interbedded sandstone-mudstone formations, the rock brittleness increases with the increasing mechanical layer thickness, hence, these two factors will achieve a balance for the development of tectonic fractures when the sandstone-mudstone thickness ratio reaches a specific value, and the development degree of tectonic fractures is the highest at this value.