Based on the elastic thin plate theory,the main law of the ore roof failure was analyzed and the formula of the ore roof thickness was deduced.The results show that the tensile stress in the roof center accounts for t...Based on the elastic thin plate theory,the main law of the ore roof failure was analyzed and the formula of the ore roof thickness was deduced.The results show that the tensile stress in the roof center accounts for the roof failure.According to the limit failure conditions of the point,the formula of the ore roof thickness was derived.Taking No.10 stope of a bauxite mine as an engineering case,the optimal thickness of the ore roof was 0.36 m.The safety factor was taken as 1.3,therefore the design thickness was 0.5 m.In the whole industrial test process,the dynamic alarm devices did not start the alarm and the ore roof was not damaged.Compared with other stopes under similar conditions,its thickness was reduced by 0.1-0.3 m.The recovery rate of the ore roof was increased by 16.7%-37.5%.展开更多
A 150-nm-thick CaN photocathode with a Mg doping concentration of 1.6 × 1017 cm-3 is activated by Cs/O in an ultrahigh vacuum chamber, and a quantum efficiency (QE) curve of the negative electron affinity trans...A 150-nm-thick CaN photocathode with a Mg doping concentration of 1.6 × 1017 cm-3 is activated by Cs/O in an ultrahigh vacuum chamber, and a quantum efficiency (QE) curve of the negative electron affinity transmission-mode (t-mode) of the GaN photocathode is obtained. The maximum QE reaches 13.0% at 290 nm. According to the t-mode QE equation solved from the diffusion equation, the QE curve is fitted. From the fitting results, the electron escape probability is 0.32, the back-interface recombination velocity is 5 ×104 cm. s^-1, and the electron diffusion length is 116 nm. Based on these parameters, the influence of CaN thickness on t-mode QE is simulated. The simulation shows that the optimal thickness of GaN is 90 nm, which is better than the 150-nm GaN.展开更多
The removal building heat load and electrical power consumption by air conditioning system are proportional to the outside conditions and solar radiation intensity. Building construction materials has substantial effe...The removal building heat load and electrical power consumption by air conditioning system are proportional to the outside conditions and solar radiation intensity. Building construction materials has substantial effects on the transmission heat through outer walls, ceiling and glazing windows. Good thermal isolation for buildings is important to reduce the transmitted heat and consumed power. The buildings models are constructed from common materials with 0 - 16 cm of thermal insulation thickness in the outer walls and ceilings, and double-layers glazing windows. The building heat loads were calculated for two types of walls and ceiling with and without thermal insulation. The cooling load temperature difference method, <em>CLTD</em>, was used to estimate the building heat load during a 24-hour each day throughout spring, summer, autumn and winter seasons. The annual cooling degree-day, <em>CDD</em> was used to estimate the optimal thermal insulation thickness and payback period with including the solar radiation effect on the outer walls surfaces. The average saved energy percentage in summer, spring, autumn and winter are 35.5%, 32.8%, 33.2% and 30.7% respectively, and average yearly saved energy is about of 33.5%. The optimal thermal insulation thickness was obtained between 7 - 12 cm and payback period of 20 - 30 month for some Egyptian Cities according to the Latitude and annual degree-days.展开更多
Irregular plates are very common structures in engineering,such as ore structures in mining.In this work,the Galerkin solution to the problem of a Kirchhoff plate lying on the Winkler foundation with two edges simply ...Irregular plates are very common structures in engineering,such as ore structures in mining.In this work,the Galerkin solution to the problem of a Kirchhoff plate lying on the Winkler foundation with two edges simply supported and the other two clamped supported is derived.Coordinate transformation technique is used during the solving process so that the solution is suitable to irregular shaped plates.The mechanical model and the solution proposed are then used to model the crown pillars between two adjacent levels in Sanshandao gold mine,which uses backfill method for mining operation.After that,an objective function,which takes security,economic profits and filling effect into consideration,is built to evaluate design proposals.Thickness optimizations for crown pillars are finally conducted in both conditions that the vertical stiffness of the foundation is known and unknown.The procedure presented in the work provides the guidance in thickness designing of complex shaped crown pillars and the preparation of backfill materials,thus to achieve the best balance between security and profits.展开更多
In this paper,a novel method is proposed and employed to design a single diffractive optical element(DOE) for implementing spectrum-splitting and beam-concentration(SSBC) functions simultaneously.We develop an opt...In this paper,a novel method is proposed and employed to design a single diffractive optical element(DOE) for implementing spectrum-splitting and beam-concentration(SSBC) functions simultaneously.We develop an optimization algorithm,through which the SSBC DOE can be optimized within an arbitrary thickness range according to the limitations of modern photolithography technology.Theoretical simulation results reveal that the designed SSBC DOE has a high optical focusing efficiency.It is expected that the designed SSBC DOE should have practical applications in high-efficiency solar cell systems.展开更多
This study develops a method for the full-size structural design of blade,involving the optimal layer thickness configuration of the blade to maximize its bending stiffness using a genetic algorithm.Numerical differen...This study develops a method for the full-size structural design of blade,involving the optimal layer thickness configuration of the blade to maximize its bending stiffness using a genetic algorithm.Numerical differentiation is employed to solve the sensitivity of blade modal frequency to the layer thickness of each part of blade.The natural frequencies of first-order flapwise and edgewise modes are selected as the optimal objectives.Based on the modal sensitivity analysis of all design variables,the effect of discretized layer thickness on bending stiffness of the blade is explored,and 14 significant design variables are filtered to drive the structural optimization.The best solution predicts an increase in natural frequencies of first-order flapwise and edgewise blade modes by up to 12%and 10.4%,respectively.The results show that the structural optimization method based on modal sensitivity is more effective to improve the structural performance.展开更多
Convective heat transfer coefficients, materializing exchanges between solid wall (here typha) and its environment, influence its behavior under excitation pulse. Temperature of wall and its density of flow vary with ...Convective heat transfer coefficients, materializing exchanges between solid wall (here typha) and its environment, influence its behavior under excitation pulse. Temperature of wall and its density of flow vary with these coefficients according to its thickness (in depth). This study therefore focuses on the evaluation of convective heat transfer coefficient on front face and the optimal insulation thickness.展开更多
Two improved algorithms are proposed to extend a diffractive optical element (DOE) to work under the broad spec- trum of sunlight. An optimum design has been found for the DOE, with a weighted average optical effici...Two improved algorithms are proposed to extend a diffractive optical element (DOE) to work under the broad spec- trum of sunlight. An optimum design has been found for the DOE, with a weighted average optical efficiency of about 6.8% better than that of the previous design. The optimization of designing high optical efficiency DOEs will pave the way for future designs of high-efficiency, low-cost lateral multijunction solar cells based on such a DOE.展开更多
In the high-humidity, hot-summer-cold-winter(HSCW) zone of China, the moisture buffering effect in the envelope is found to be significant in optimum insulation thickness. However, few studies have considered the effe...In the high-humidity, hot-summer-cold-winter(HSCW) zone of China, the moisture buffering effect in the envelope is found to be significant in optimum insulation thickness. However, few studies have considered the effects of indoor moisture buffering on the optimum insulation thickness and energy consumption. In this study, we considered the energy load of an exterior wall under moisture transfer from the outdoor to the indoor environment. An optimum insulation thickness was obtained by integrating the P1-P2model. A residential building was selected for the case study to verify the proposed method. Finally, a comparison was made with two other widely used methods, namely the transient heat transfer model(TH) and the coupled heat and moisture transfer model(CHM). The results indicated that the indoor moisture buffering effect on the optimum insulation thickness is 2.54 times greater than the moisture buffering effect in the envelope, and the two moisture buffering effects make opposing contributions to the optimum insulation thickness. Therefore, when TH or CHM was used without considering the indoor moisture buffering effect, the optimum insulation thickness of the southern wall under one air change per hour(1 ACH) and 100% normal heat source may be overestimated by 2.13% to 3. 59%, and the annual energy load on a single wall may be underestimated by 10.10% to 11.44%. The decrease of airtightness and the increase of indoor heat sources may result in a slight reduction of optimum insulation thickness. This study will enable professionals to consider the effects of moisture buffering on the design of insulation thickness.展开更多
In this Letter, we demonstrate that by adjusting the thickness of the buffer layer, the optical responses of a guided-mode resonance filter (GMRF) can be improved for sensor applications. The GMRF is fabricated usin...In this Letter, we demonstrate that by adjusting the thickness of the buffer layer, the optical responses of a guided-mode resonance filter (GMRF) can be improved for sensor applications. The GMRF is fabricated using a replica molding with a plastic substrate and a UV-curable polymer. SiO2 buffer layers of different thicknesses are deposited before the waveguide-layer deposition. The sensitivity of the GMRFs decreases slightly with in- creasing SiO2 layer thickness. By contrast, the full width at half-maximum reduces substantially with increasing SiO2 layer thickness, resulting in the improvement of the overall figure of merit.展开更多
基金financial support from the National Key Research and Development Program of China(No.2017YFC0602901)。
文摘Based on the elastic thin plate theory,the main law of the ore roof failure was analyzed and the formula of the ore roof thickness was deduced.The results show that the tensile stress in the roof center accounts for the roof failure.According to the limit failure conditions of the point,the formula of the ore roof thickness was derived.Taking No.10 stope of a bauxite mine as an engineering case,the optimal thickness of the ore roof was 0.36 m.The safety factor was taken as 1.3,therefore the design thickness was 0.5 m.In the whole industrial test process,the dynamic alarm devices did not start the alarm and the ore roof was not damaged.Compared with other stopes under similar conditions,its thickness was reduced by 0.1-0.3 m.The recovery rate of the ore roof was increased by 16.7%-37.5%.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60871012)the National Key Laboratory of Science and Technology Foundation on Low-Light-Level Night Vision,China (Grant No. J20110104)the Research and Innovation Plan for Graduate Students of Jiangsu Higher Education Institutions (Grant No. CXZZ11 0238)
文摘A 150-nm-thick CaN photocathode with a Mg doping concentration of 1.6 × 1017 cm-3 is activated by Cs/O in an ultrahigh vacuum chamber, and a quantum efficiency (QE) curve of the negative electron affinity transmission-mode (t-mode) of the GaN photocathode is obtained. The maximum QE reaches 13.0% at 290 nm. According to the t-mode QE equation solved from the diffusion equation, the QE curve is fitted. From the fitting results, the electron escape probability is 0.32, the back-interface recombination velocity is 5 ×104 cm. s^-1, and the electron diffusion length is 116 nm. Based on these parameters, the influence of CaN thickness on t-mode QE is simulated. The simulation shows that the optimal thickness of GaN is 90 nm, which is better than the 150-nm GaN.
文摘The removal building heat load and electrical power consumption by air conditioning system are proportional to the outside conditions and solar radiation intensity. Building construction materials has substantial effects on the transmission heat through outer walls, ceiling and glazing windows. Good thermal isolation for buildings is important to reduce the transmitted heat and consumed power. The buildings models are constructed from common materials with 0 - 16 cm of thermal insulation thickness in the outer walls and ceilings, and double-layers glazing windows. The building heat loads were calculated for two types of walls and ceiling with and without thermal insulation. The cooling load temperature difference method, <em>CLTD</em>, was used to estimate the building heat load during a 24-hour each day throughout spring, summer, autumn and winter seasons. The annual cooling degree-day, <em>CDD</em> was used to estimate the optimal thermal insulation thickness and payback period with including the solar radiation effect on the outer walls surfaces. The average saved energy percentage in summer, spring, autumn and winter are 35.5%, 32.8%, 33.2% and 30.7% respectively, and average yearly saved energy is about of 33.5%. The optimal thermal insulation thickness was obtained between 7 - 12 cm and payback period of 20 - 30 month for some Egyptian Cities according to the Latitude and annual degree-days.
基金Project (51504044) supported by the National Natural Science Foundation of ChinaProject (14KF05) supported by the Research Fund of the State Key Laboratory of Coal Resources and Mine Safety(CUMT),China+2 种基金Project (2015CDJXY) supported by the Fundamental Research Funds for the Central Universities,ChinaProject (2015M570607) supported by Postdoctoral Science FoundationProject (2011DA105287-MS201503) supported by the Independent Subject of State Key Laboratory of Coal Mine Disaster Dynamics and Control,China
文摘Irregular plates are very common structures in engineering,such as ore structures in mining.In this work,the Galerkin solution to the problem of a Kirchhoff plate lying on the Winkler foundation with two edges simply supported and the other two clamped supported is derived.Coordinate transformation technique is used during the solving process so that the solution is suitable to irregular shaped plates.The mechanical model and the solution proposed are then used to model the crown pillars between two adjacent levels in Sanshandao gold mine,which uses backfill method for mining operation.After that,an objective function,which takes security,economic profits and filling effect into consideration,is built to evaluate design proposals.Thickness optimizations for crown pillars are finally conducted in both conditions that the vertical stiffness of the foundation is known and unknown.The procedure presented in the work provides the guidance in thickness designing of complex shaped crown pillars and the preparation of backfill materials,thus to achieve the best balance between security and profits.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB301801)the National Natural Science Foundation of China (GrantNos. 91233202,10904099,11204188,61205097,and 11174211)
文摘In this paper,a novel method is proposed and employed to design a single diffractive optical element(DOE) for implementing spectrum-splitting and beam-concentration(SSBC) functions simultaneously.We develop an optimization algorithm,through which the SSBC DOE can be optimized within an arbitrary thickness range according to the limitations of modern photolithography technology.Theoretical simulation results reveal that the designed SSBC DOE has a high optical focusing efficiency.It is expected that the designed SSBC DOE should have practical applications in high-efficiency solar cell systems.
基金supported by the National Natural Science Foundation of China(Nos.51965034,51565028)the Lanzhou City Innovation and Entrepreneurship Project(No.2018-RC-25)。
文摘This study develops a method for the full-size structural design of blade,involving the optimal layer thickness configuration of the blade to maximize its bending stiffness using a genetic algorithm.Numerical differentiation is employed to solve the sensitivity of blade modal frequency to the layer thickness of each part of blade.The natural frequencies of first-order flapwise and edgewise modes are selected as the optimal objectives.Based on the modal sensitivity analysis of all design variables,the effect of discretized layer thickness on bending stiffness of the blade is explored,and 14 significant design variables are filtered to drive the structural optimization.The best solution predicts an increase in natural frequencies of first-order flapwise and edgewise blade modes by up to 12%and 10.4%,respectively.The results show that the structural optimization method based on modal sensitivity is more effective to improve the structural performance.
文摘Convective heat transfer coefficients, materializing exchanges between solid wall (here typha) and its environment, influence its behavior under excitation pulse. Temperature of wall and its density of flow vary with these coefficients according to its thickness (in depth). This study therefore focuses on the evaluation of convective heat transfer coefficient on front face and the optimal insulation thickness.
基金Project supported by the National Natural Science Foundation of China(Grants Nos.91233202,21173260,and 51072221)the National Basic Research Program of China(Grant No.2012CB932903
文摘Two improved algorithms are proposed to extend a diffractive optical element (DOE) to work under the broad spec- trum of sunlight. An optimum design has been found for the DOE, with a weighted average optical efficiency of about 6.8% better than that of the previous design. The optimization of designing high optical efficiency DOEs will pave the way for future designs of high-efficiency, low-cost lateral multijunction solar cells based on such a DOE.
基金supported by the National Natural Science Foundation of China (Nos. 51978623 and 52076189)。
文摘In the high-humidity, hot-summer-cold-winter(HSCW) zone of China, the moisture buffering effect in the envelope is found to be significant in optimum insulation thickness. However, few studies have considered the effects of indoor moisture buffering on the optimum insulation thickness and energy consumption. In this study, we considered the energy load of an exterior wall under moisture transfer from the outdoor to the indoor environment. An optimum insulation thickness was obtained by integrating the P1-P2model. A residential building was selected for the case study to verify the proposed method. Finally, a comparison was made with two other widely used methods, namely the transient heat transfer model(TH) and the coupled heat and moisture transfer model(CHM). The results indicated that the indoor moisture buffering effect on the optimum insulation thickness is 2.54 times greater than the moisture buffering effect in the envelope, and the two moisture buffering effects make opposing contributions to the optimum insulation thickness. Therefore, when TH or CHM was used without considering the indoor moisture buffering effect, the optimum insulation thickness of the southern wall under one air change per hour(1 ACH) and 100% normal heat source may be overestimated by 2.13% to 3. 59%, and the annual energy load on a single wall may be underestimated by 10.10% to 11.44%. The decrease of airtightness and the increase of indoor heat sources may result in a slight reduction of optimum insulation thickness. This study will enable professionals to consider the effects of moisture buffering on the design of insulation thickness.
基金supported by the National Science Council,Taiwan,China(Grant Nos.NSC 101-2218-E-9-6-MY2and MOST 103-2221-E-009-075)
文摘In this Letter, we demonstrate that by adjusting the thickness of the buffer layer, the optical responses of a guided-mode resonance filter (GMRF) can be improved for sensor applications. The GMRF is fabricated using a replica molding with a plastic substrate and a UV-curable polymer. SiO2 buffer layers of different thicknesses are deposited before the waveguide-layer deposition. The sensitivity of the GMRFs decreases slightly with in- creasing SiO2 layer thickness. By contrast, the full width at half-maximum reduces substantially with increasing SiO2 layer thickness, resulting in the improvement of the overall figure of merit.