By double beam and double wave interferomatric (DDI) method, the optical constants of thin films, i.e. refractive index, extinction coefficient and thickness may be determined in infrared (3.39 μm) and in visible (...By double beam and double wave interferomatric (DDI) method, the optical constants of thin films, i.e. refractive index, extinction coefficient and thickness may be determined in infrared (3.39 μm) and in visible (0.633 μm) wavelengths in the same optical path with a tunable double wave He Ne laser designed by ourselves. The measuring principle and the device are describod.展开更多
The thin film gas sensors of bismuth iron molybdate were prepared by ion beam sputtering technique. The prototype gas sensors studied have high sensitivity and selectivity to reducing gases, such as ethanol vapor, s...The thin film gas sensors of bismuth iron molybdate were prepared by ion beam sputtering technique. The prototype gas sensors studied have high sensitivity and selectivity to reducing gases, such as ethanol vapor, show a long term stability of response under most operating conditions and insensitivity to atmospheric humidity, and respond quickly comparing to traditional sintered gas sensors. The crystallographic structure and phase composition of these thin films were investigated with XRD, XPS and SEM techniques.展开更多
The influence of the delocalization probability on the mixing interaction between excited levels of Ce3+ and the conduction band of SrS was analysed. The observation of emission wave forms of SrSCe thin film electrolu...The influence of the delocalization probability on the mixing interaction between excited levels of Ce3+ and the conduction band of SrS was analysed. The observation of emission wave forms of SrSCe thin film electroluminescence showed that only leading edge emission peak was observed for one sample and the leading and trailing edge emission peaks were observed for another in a half period of sinusoid applied voltage. This difference is related to the influences of sulphur vacancies on the excitation and emission processes. The leading edge emssion is dominated by discrete luminescence caused by direct impact excitation and the trailing edge emission and a part of leading edge emission belong to recombination luminescence caused by impact ionization and delocalization.展开更多
Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃,...Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃, The electrical, structural, and optical properties of the films were investigated. The deposited films were then applied as i-layers for p-i-n single junction solar cells. The current-voltage (I - V) characteristics of the cells were measured before and after the light soaking. The results suggest that the films deposited near the transition region have an optimum properties for application in solar cells. The cell with an i-layer prepared near the transition region shows the best stable performance.展开更多
High-quality Ga-doped ZnO (ZnO:Ga) single crystalline films with various Ga concentrations are grown on a- plane sapphire substrates using molecular-beam epitaxy. The site configuration of doped Ga atoms is studied...High-quality Ga-doped ZnO (ZnO:Ga) single crystalline films with various Ga concentrations are grown on a- plane sapphire substrates using molecular-beam epitaxy. The site configuration of doped Ga atoms is studied by means of x-ray absorption spectroscopy. It is found that nearly all Ga can substitute into ZnO lattice as electrically active donors, a generating high density of free carriers with about one electron per Ga dopant when the Ga concentration is no more than 2%. However, further increasing the Ga doping concentration leads to a decrease of the conductivity due to partial segregation of Ga atoms to the minor phase of the spinel ZnGa2O4 or other intermediate phase. It seems that the maximum solubility of Ga in the ZnO single crystalline film is about 2at.% and the lowest resistivity can reach 1.92 ×10-4Ω·cm at room temperature, close to the best value reported. In contrast to ZnO:Ga thin film with 1% or 2% Ga doping, the film with 4% Ga doping exhibits a metal semiconductor transition at 80 K. The scattering mechanism of conducting electrons in single crystalline ZnO:Ga thin film is discussed.展开更多
The Hosubstituted YBCO thin films were prepared with a single target by DCmagnetron sputterring technique. The properties of these thin films such as Tc and Jc were mainly affected by the deposition temperature Ts. Th...The Hosubstituted YBCO thin films were prepared with a single target by DCmagnetron sputterring technique. The properties of these thin films such as Tc and Jc were mainly affected by the deposition temperature Ts. The Jc values in all of the substituted films increased, with an optimal effect at x=04 at the 77 K and 03 T.展开更多
Well adhered C 3N 4 films were prepared by Plasma Enhanced Chemical Vapor Deposition (PECVD) on industrial pure iron substrates using ternary Si N C films as buffer layer. XRD measurement showed that the C 3N 4 ...Well adhered C 3N 4 films were prepared by Plasma Enhanced Chemical Vapor Deposition (PECVD) on industrial pure iron substrates using ternary Si N C films as buffer layer. XRD measurement showed that the C 3N 4 films belong to the α C 3N 4 phase. Electrochemical experiments showed that the corrosive resistance of the pure iron raised by two orders of magnitude after being covered with the α C 3N 4 coating.展开更多
The Y_2O_3 thin film was applied on Fe-3Al intermetallic compound by electrodeposition and thermal decomposition. The cyclic oxidation of the Fe-3Al specimens with and without surfaceapplied Y_2O_3 thin film was carri...The Y_2O_3 thin film was applied on Fe-3Al intermetallic compound by electrodeposition and thermal decomposition. The cyclic oxidation of the Fe-3Al specimens with and without surfaceapplied Y_2O_3 thin film was carried out at 900 ℃ in air. The results show that the selective oxidation of Al in Fe-3Al was promoted, and both of the plasticity and the adhesion of the oxide scale formed on Fe3Al were improved and the high temperature oxidation resistance of Fe3Al was enhanced markedly.展开更多
SrS∶HoF 3 thin film was prepared by double source method with electron beam evaporation. The fine structure of electroluminescence (EL) spectrum is found for the symmetry of the SrS∶HoF 3 thin film to be lower. Th...SrS∶HoF 3 thin film was prepared by double source method with electron beam evaporation. The fine structure of electroluminescence (EL) spectrum is found for the symmetry of the SrS∶HoF 3 thin film to be lower. The broadness of red peak is wider than that of ZnS∶HoF 3 thin film. Red EL emission in the SrS∶HoF 3 thin film comes from 5F 3 5I 7+ 5F 5 5I 8 transition. The intensity of blue and red emission increases obviously in the SrS∶HoF 3 EL spectrum and white EL is obtained. The EL mechanism of the SrS∶HoF 3 thin film is dominantly the energy transfer from the crystal host to luminescent centers by 4f 95d electrons.展开更多
The SrS∶HoF 3 Electroluminescent (EL) thin films are prepared at the different substrate temperature by electron beam evaporation. The crystallinity and EL characteristics of the samples are analyzed. It is found th...The SrS∶HoF 3 Electroluminescent (EL) thin films are prepared at the different substrate temperature by electron beam evaporation. The crystallinity and EL characteristics of the samples are analyzed. It is found that the main diffraction peak is (200) at the higher substrate temperature and the main diffraction peak is (111) at the lower substrate temperature. The blue emission intensity and EL brightness of the SrS∶HoF 3 thin films increase with the increase of the substrate temperature. Annealing the samples can change the cyrstal phase and strengthen the blue emission of EL thin film.展开更多
TiO 2 anatase thin films on quartz substrates were prepared with sol gel method. The dry gel films, made by spin coating 10 times, were calcined at various temperatures. From X ray diffraction analyses, it is f...TiO 2 anatase thin films on quartz substrates were prepared with sol gel method. The dry gel films, made by spin coating 10 times, were calcined at various temperatures. From X ray diffraction analyses, it is found that the anatase to rutile phase transformation temperature of the films is higher than 850 ℃, the films are preferentially oriented on (0 0 1) plane, i.e. c axis oriented. The thickness, refractive indexes, absorption coefficients and extinction coefficients of the films were determined from UV Vis transmission spectra of the films using a UV Vis spectrophotometer. The thickness of the films is about 570 nm. The refractive indexes, absorption coefficients and the extinction coefficients of the present films are larger than the values of anatase films prepared by sputtering. This indicates that the films made with sol gel method are very dense.展开更多
Near infrared electroluminescence characteristics of the Er-doped ZnS thin film devices,fabricated by thermal evaporation with two boats, are reported. The study of the film microstructure has been carried out using X...Near infrared electroluminescence characteristics of the Er-doped ZnS thin film devices,fabricated by thermal evaporation with two boats, are reported. The study of the film microstructure has been carried out using X-ray diffraction. The effects of the Er-doped film microstructure on luminescence are pointed out.展开更多
Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design...Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets,or are difficult to suit for different types of structures,e.g.,designing for different materials at each layer.These methods also cannot accommodate versatile design situations under different angles and polarizations.In addition,how to benefit practical fabrications and manufacturing has not been extensively considered yet.In this work,we introduce OptoGPT(Opto Generative Pretrained Transformer),a decoder-only transformer,to solve all these drawbacks and issues simultaneously.展开更多
In this work, AlN films were grown using gallium (Ga) as surfactant on 4° off-axis 4H-SiC substrates via microwave plasma chemical vapor deposition (MPCVD). We have found that AlN growth rate can be greatly impro...In this work, AlN films were grown using gallium (Ga) as surfactant on 4° off-axis 4H-SiC substrates via microwave plasma chemical vapor deposition (MPCVD). We have found that AlN growth rate can be greatly improved due to the catalytic effect of trimethyl-gallium (TMGa), but AlN crystal structure and composition are not affected. When the proportion of TMGa in gas phase was low, crystal quality of AlN can be improved and three-dimensional growth mode of AlN was enhanced with the increase of Ga source. When the proportion of TMGa in gas phase was high, two-dimensional growth mode of AlN was presented, with the increase of Ga source results in the deterioration of AlN crystal quality. Finally, employing a two-step growth approach, involving the initial growth of Ga-free AlN nucleation layer followed by Ga-assisted AlN growth, high quality of AlN film with flat surface was obtained and the full width at half maximum (FWHM) values of 415 nm AlN (002) and (102) planes were 465 and 597 arcsec.展开更多
Pure cobalt(Co)thin films were fabricated by direct current magnetron sputtering,and the effects of sputtering power and pres-sure on the microstructure and electromagnetic properties of the films were investigated.As...Pure cobalt(Co)thin films were fabricated by direct current magnetron sputtering,and the effects of sputtering power and pres-sure on the microstructure and electromagnetic properties of the films were investigated.As the sputtering power increases from 15 to 60 W,the Co thin films transition from an amorphous to a polycrystalline state,accompanied by an increase in the intercrystal pore width.Simultaneously,the resistivity decreases from 276 to 99μΩ·cm,coercivity increases from 162 to 293 Oe,and in-plane magnetic aniso-tropy disappears.As the sputtering pressure decreases from 1.6 to 0.2 Pa,grain size significantly increases,resistivity significantly de-creases,and the coercivity significantly increases(from 67 to 280 Oe),which can be attributed to the increase in defect width.Corres-pondingly,a quantitative model for the coercivity of Co thin films was formulated.The polycrystalline films sputtered under pressures of 0.2 and 0.4 Pa exhibit significant in-plane magnetic anisotropy,which is primarily attributable to increased microstress.展开更多
We measure the time-resolved terahertz spectroscopy of GeSn thin film and studied the ultrafast dynamics of its photo-generated carriers.The experimental results show that there are photo-generated carriers in GeSn un...We measure the time-resolved terahertz spectroscopy of GeSn thin film and studied the ultrafast dynamics of its photo-generated carriers.The experimental results show that there are photo-generated carriers in GeSn under femtosecond laser excitation at 2500 nm,and its pump-induced photoconductivity can be explained by the Drude–Smith model.The carrier recombination process is mainly dominated by defect-assisted Auger processes and defect capture.The firstand second-order recombination rates are obtained by the rate equation fitting,which are(2.6±1.1)×10^(-2)ps^(-1)and(6.6±1.8)×10^(-19)cm^(3)·ps^(-1),respectively.Meanwhile,we also obtain the diffusion length of photo-generated carriers in GeSn,which is about 0.4μm,and it changes with the pump delay time.These results are important for the GeSn-based infrared optoelectronic devices,and demonstrate that Ge Sn materials can be applied to high-speed optoelectronic detectors and other applications.展开更多
The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflect...The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflective conductive materials can effectively shield EMI,they prevent deformation of the devices owing to rigidity and generate secondary electromagnetic pollution simultaneously.Herein,soft and stretchable EMI shielding thin film devices with absorption-dominant EMI shielding behavior is presented.The devices consist of liquid metal(LM)layer and LM grid-patterned layer separated by a thin elastomeric film,fabricated by leveraging superior adhesion of aerosol-deposited LM on elastomer.The devices demonstrate high electromagnetic shielding effectiveness(SE)(SE_(T) of up to 75 dB)with low reflectance(SER of 1.5 dB at the resonant frequency)owing to EMI absorption induced by multiple internal reflection generated in the LM grid architectures.Remarkably,the excellent stretchability of the LM-based devices facilitates tunable EMI shielding abilities through grid space adjustment upon strain(resonant frequency shift from 81.3 to 71.3 GHz@33%strain)and is also capable of retaining shielding effectiveness even after multiple strain cycles.This newly explored device presents an advanced paradigm for powerful EMI shielding performance for next-generation smart electronics.展开更多
The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure.Designing thermoelectric materials with a simple,structurally-uniform int...The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure.Designing thermoelectric materials with a simple,structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties.Here,we synthesized Bi_(2−x)Sb_(x)Te_(3)(x=0,0.1,0.2,0.4)nanoflakes using a hydrothermal method,and prepared Bi_(2−x)Sb_(x)Te_(3)thin films with predominantly(0001)interfaces by stacking the nanoflakes through spin coating.The influence of the annealing temperature and Sb content on the(0001)interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy.Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the(0001)interface.As such it enhances interfacial connectivity and improves the electrical transport properties.Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient.Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient,the maximum power factor of the Bi_(1.8)Sb_(0.2)Te_(3)nanoflake films reaches 1.72 mW m^(−1)K^(−2),which is 43%higher than that of a pure Bi_(2)Te_(3)thin film.展开更多
This study explored the performances of CZTS-based thin-film solar cell with three novel buffer layer materials ZnS, CdS, and CdZnS, as well as with variation in thickness of buffer and absorber-layer, doping concentr...This study explored the performances of CZTS-based thin-film solar cell with three novel buffer layer materials ZnS, CdS, and CdZnS, as well as with variation in thickness of buffer and absorber-layer, doping concentrations of absorber-layer material and operating temperature. Our aims focused to identify the most optimal thin-film solar cell structure that offers high efficiency and lower toxicity which are desirable for sustainable and eco-friendly energy sources globally. SCAPS-1D, widely used software for modeling and simulating solar cells, has been used and solar cell fundamental performance parameters such as open-circuited voltage (), short-circuited current density (), fill-factor() and efficiency() have been optimized in this study. Based on our simulation results, it was found that CZTS solar cell with Cd<sub>0.4</sub>Zn<sub>0.6</sub>S as buffer-layer offers the most optimal combination of high efficiency and lower toxicity in comparison to other structure investigated in our study. Although the efficiency of Cd<sub>0.4</sub>Zn<sub>0.6</sub>S, ZnS and CdS are comparable, Cd<sub>0.4</sub>Zn<sub>0.6</sub>S is preferable to use as buffer-layer for its non-toxic property. In addition, evaluation of performance as a function of buffer-layer thickness for Cd<sub>0.4</sub>Zn<sub>0.6</sub>S, ZnS and CdS showed that optimum buffer-layer thickness for Cd<sub>0.4</sub>Zn<sub>0.6</sub>S was in the range from 50 to 150nm while ZnS offered only 50 – 75 nm. Furthermore, the temperature dependence performance parameters evaluation revealed that it is better to operate solar cell at temperature 290K for stable operation with optimum performances. This study would provide valuable insights into design and optimization of nanotechnology-based solar energy technology for minimizing global energy crisis and developing eco-friendly energy sources sustainable and simultaneously.展开更多
AlN was used as a host material and doped with Eu grown on Si substrate by pulsed laser deposition (PLD) with low substrate temperature. The X-ray diffraction (XRD) data revealed the orientation and the composition of...AlN was used as a host material and doped with Eu grown on Si substrate by pulsed laser deposition (PLD) with low substrate temperature. The X-ray diffraction (XRD) data revealed the orientation and the composition of the thin film. The surface morphology was studied by scanning electron microscope (SEM). While raising the annealing temperatures from 300˚C to 900˚C, the emission was observed from AlN: Eu under excitation of 260 nm excitation. The photoluminescence (PL) was integrated over the visible light wavelength shifted from the blue to the red zone in the CIE 1931 chromaticity coordinates. The luminescence color coordination of AlN: Eu depending on the annealing temperatures guides the further study of Eu-doped nitrides manufacturing on white light emitting diode (LED) and full color LED devices.展开更多
文摘By double beam and double wave interferomatric (DDI) method, the optical constants of thin films, i.e. refractive index, extinction coefficient and thickness may be determined in infrared (3.39 μm) and in visible (0.633 μm) wavelengths in the same optical path with a tunable double wave He Ne laser designed by ourselves. The measuring principle and the device are describod.
文摘The thin film gas sensors of bismuth iron molybdate were prepared by ion beam sputtering technique. The prototype gas sensors studied have high sensitivity and selectivity to reducing gases, such as ethanol vapor, show a long term stability of response under most operating conditions and insensitivity to atmospheric humidity, and respond quickly comparing to traditional sintered gas sensors. The crystallographic structure and phase composition of these thin films were investigated with XRD, XPS and SEM techniques.
文摘The influence of the delocalization probability on the mixing interaction between excited levels of Ce3+ and the conduction band of SrS was analysed. The observation of emission wave forms of SrSCe thin film electroluminescence showed that only leading edge emission peak was observed for one sample and the leading and trailing edge emission peaks were observed for another in a half period of sinusoid applied voltage. This difference is related to the influences of sulphur vacancies on the excitation and emission processes. The leading edge emssion is dominated by discrete luminescence caused by direct impact excitation and the trailing edge emission and a part of leading edge emission belong to recombination luminescence caused by impact ionization and delocalization.
文摘Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃, The electrical, structural, and optical properties of the films were investigated. The deposited films were then applied as i-layers for p-i-n single junction solar cells. The current-voltage (I - V) characteristics of the cells were measured before and after the light soaking. The results suggest that the films deposited near the transition region have an optimum properties for application in solar cells. The cell with an i-layer prepared near the transition region shows the best stable performance.
基金Supported by the National Natural Science Foundation of China under Grant No 10804017, the Natural Science Foundation of Jiangsu Province under Grant No BK2007118, Research Fund for the Doctoral Program of Higher Education of China under Grant No 20070286037, Cyanine-Project Foundation of Jiangsu Province under Grant No 1107020060, Foundation for Climax Talents Plan in Six-Big Fields of Jiangsu Province under Grant No 1107020070, and New Century Excellent Talents in University (NCET-05-0452).
文摘High-quality Ga-doped ZnO (ZnO:Ga) single crystalline films with various Ga concentrations are grown on a- plane sapphire substrates using molecular-beam epitaxy. The site configuration of doped Ga atoms is studied by means of x-ray absorption spectroscopy. It is found that nearly all Ga can substitute into ZnO lattice as electrically active donors, a generating high density of free carriers with about one electron per Ga dopant when the Ga concentration is no more than 2%. However, further increasing the Ga doping concentration leads to a decrease of the conductivity due to partial segregation of Ga atoms to the minor phase of the spinel ZnGa2O4 or other intermediate phase. It seems that the maximum solubility of Ga in the ZnO single crystalline film is about 2at.% and the lowest resistivity can reach 1.92 ×10-4Ω·cm at room temperature, close to the best value reported. In contrast to ZnO:Ga thin film with 1% or 2% Ga doping, the film with 4% Ga doping exhibits a metal semiconductor transition at 80 K. The scattering mechanism of conducting electrons in single crystalline ZnO:Ga thin film is discussed.
文摘The Hosubstituted YBCO thin films were prepared with a single target by DCmagnetron sputterring technique. The properties of these thin films such as Tc and Jc were mainly affected by the deposition temperature Ts. The Jc values in all of the substituted films increased, with an optimal effect at x=04 at the 77 K and 03 T.
文摘Well adhered C 3N 4 films were prepared by Plasma Enhanced Chemical Vapor Deposition (PECVD) on industrial pure iron substrates using ternary Si N C films as buffer layer. XRD measurement showed that the C 3N 4 films belong to the α C 3N 4 phase. Electrochemical experiments showed that the corrosive resistance of the pure iron raised by two orders of magnitude after being covered with the α C 3N 4 coating.
文摘The Y_2O_3 thin film was applied on Fe-3Al intermetallic compound by electrodeposition and thermal decomposition. The cyclic oxidation of the Fe-3Al specimens with and without surfaceapplied Y_2O_3 thin film was carried out at 900 ℃ in air. The results show that the selective oxidation of Al in Fe-3Al was promoted, and both of the plasticity and the adhesion of the oxide scale formed on Fe3Al were improved and the high temperature oxidation resistance of Fe3Al was enhanced markedly.
文摘SrS∶HoF 3 thin film was prepared by double source method with electron beam evaporation. The fine structure of electroluminescence (EL) spectrum is found for the symmetry of the SrS∶HoF 3 thin film to be lower. The broadness of red peak is wider than that of ZnS∶HoF 3 thin film. Red EL emission in the SrS∶HoF 3 thin film comes from 5F 3 5I 7+ 5F 5 5I 8 transition. The intensity of blue and red emission increases obviously in the SrS∶HoF 3 EL spectrum and white EL is obtained. The EL mechanism of the SrS∶HoF 3 thin film is dominantly the energy transfer from the crystal host to luminescent centers by 4f 95d electrons.
文摘The SrS∶HoF 3 Electroluminescent (EL) thin films are prepared at the different substrate temperature by electron beam evaporation. The crystallinity and EL characteristics of the samples are analyzed. It is found that the main diffraction peak is (200) at the higher substrate temperature and the main diffraction peak is (111) at the lower substrate temperature. The blue emission intensity and EL brightness of the SrS∶HoF 3 thin films increase with the increase of the substrate temperature. Annealing the samples can change the cyrstal phase and strengthen the blue emission of EL thin film.
文摘TiO 2 anatase thin films on quartz substrates were prepared with sol gel method. The dry gel films, made by spin coating 10 times, were calcined at various temperatures. From X ray diffraction analyses, it is found that the anatase to rutile phase transformation temperature of the films is higher than 850 ℃, the films are preferentially oriented on (0 0 1) plane, i.e. c axis oriented. The thickness, refractive indexes, absorption coefficients and extinction coefficients of the films were determined from UV Vis transmission spectra of the films using a UV Vis spectrophotometer. The thickness of the films is about 570 nm. The refractive indexes, absorption coefficients and the extinction coefficients of the present films are larger than the values of anatase films prepared by sputtering. This indicates that the films made with sol gel method are very dense.
文摘Near infrared electroluminescence characteristics of the Er-doped ZnS thin film devices,fabricated by thermal evaporation with two boats, are reported. The study of the film microstructure has been carried out using X-ray diffraction. The effects of the Er-doped film microstructure on luminescence are pointed out.
基金the National Science Foundation(PFI-008513 and FET-2309403)for the support of this work.
文摘Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets,or are difficult to suit for different types of structures,e.g.,designing for different materials at each layer.These methods also cannot accommodate versatile design situations under different angles and polarizations.In addition,how to benefit practical fabrications and manufacturing has not been extensively considered yet.In this work,we introduce OptoGPT(Opto Generative Pretrained Transformer),a decoder-only transformer,to solve all these drawbacks and issues simultaneously.
基金supported by the Key Research and Development Program of Jilin Provincial Department of Science and Technology (No. 20210201031GX)Innovation capacity building project of Jilin Province (No. 2023C031-2)The Key Research and Development Program of Jiangsu Province (No. BE2022057-1)。
文摘In this work, AlN films were grown using gallium (Ga) as surfactant on 4° off-axis 4H-SiC substrates via microwave plasma chemical vapor deposition (MPCVD). We have found that AlN growth rate can be greatly improved due to the catalytic effect of trimethyl-gallium (TMGa), but AlN crystal structure and composition are not affected. When the proportion of TMGa in gas phase was low, crystal quality of AlN can be improved and three-dimensional growth mode of AlN was enhanced with the increase of Ga source. When the proportion of TMGa in gas phase was high, two-dimensional growth mode of AlN was presented, with the increase of Ga source results in the deterioration of AlN crystal quality. Finally, employing a two-step growth approach, involving the initial growth of Ga-free AlN nucleation layer followed by Ga-assisted AlN growth, high quality of AlN film with flat surface was obtained and the full width at half maximum (FWHM) values of 415 nm AlN (002) and (102) planes were 465 and 597 arcsec.
基金the financial support from the National Key Research and Development Program of China(No.2017YFB0305500)the State Key Laboratory of Powder Metallurgy,Central South University,Changsha,China.
文摘Pure cobalt(Co)thin films were fabricated by direct current magnetron sputtering,and the effects of sputtering power and pres-sure on the microstructure and electromagnetic properties of the films were investigated.As the sputtering power increases from 15 to 60 W,the Co thin films transition from an amorphous to a polycrystalline state,accompanied by an increase in the intercrystal pore width.Simultaneously,the resistivity decreases from 276 to 99μΩ·cm,coercivity increases from 162 to 293 Oe,and in-plane magnetic aniso-tropy disappears.As the sputtering pressure decreases from 1.6 to 0.2 Pa,grain size significantly increases,resistivity significantly de-creases,and the coercivity significantly increases(from 67 to 280 Oe),which can be attributed to the increase in defect width.Corres-pondingly,a quantitative model for the coercivity of Co thin films was formulated.The polycrystalline films sputtered under pressures of 0.2 and 0.4 Pa exhibit significant in-plane magnetic anisotropy,which is primarily attributable to increased microstress.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12004067,11974070,62027807,and 52272137)the National Key R&D Program of China(Grant No.2022YFA1403000)。
文摘We measure the time-resolved terahertz spectroscopy of GeSn thin film and studied the ultrafast dynamics of its photo-generated carriers.The experimental results show that there are photo-generated carriers in GeSn under femtosecond laser excitation at 2500 nm,and its pump-induced photoconductivity can be explained by the Drude–Smith model.The carrier recombination process is mainly dominated by defect-assisted Auger processes and defect capture.The firstand second-order recombination rates are obtained by the rate equation fitting,which are(2.6±1.1)×10^(-2)ps^(-1)and(6.6±1.8)×10^(-19)cm^(3)·ps^(-1),respectively.Meanwhile,we also obtain the diffusion length of photo-generated carriers in GeSn,which is about 0.4μm,and it changes with the pump delay time.These results are important for the GeSn-based infrared optoelectronic devices,and demonstrate that Ge Sn materials can be applied to high-speed optoelectronic detectors and other applications.
基金supported by National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(RS-2024-00335216,RS-2024-00407084 and RS-2023-00207836)Korea Environment Industry&Technology Institute(KEITI)through the R&D Project of Recycling Development for Future Waste Resources Program,funded by the Korea Ministry of Environment(MOE)(2022003500003).
文摘The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflective conductive materials can effectively shield EMI,they prevent deformation of the devices owing to rigidity and generate secondary electromagnetic pollution simultaneously.Herein,soft and stretchable EMI shielding thin film devices with absorption-dominant EMI shielding behavior is presented.The devices consist of liquid metal(LM)layer and LM grid-patterned layer separated by a thin elastomeric film,fabricated by leveraging superior adhesion of aerosol-deposited LM on elastomer.The devices demonstrate high electromagnetic shielding effectiveness(SE)(SE_(T) of up to 75 dB)with low reflectance(SER of 1.5 dB at the resonant frequency)owing to EMI absorption induced by multiple internal reflection generated in the LM grid architectures.Remarkably,the excellent stretchability of the LM-based devices facilitates tunable EMI shielding abilities through grid space adjustment upon strain(resonant frequency shift from 81.3 to 71.3 GHz@33%strain)and is also capable of retaining shielding effectiveness even after multiple strain cycles.This newly explored device presents an advanced paradigm for powerful EMI shielding performance for next-generation smart electronics.
基金supported by the National Natural Science Foundation of China(52272235)supported by the Fundamental Research Funds for the Central Universities(WUT:2021III016GX).
文摘The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure.Designing thermoelectric materials with a simple,structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties.Here,we synthesized Bi_(2−x)Sb_(x)Te_(3)(x=0,0.1,0.2,0.4)nanoflakes using a hydrothermal method,and prepared Bi_(2−x)Sb_(x)Te_(3)thin films with predominantly(0001)interfaces by stacking the nanoflakes through spin coating.The influence of the annealing temperature and Sb content on the(0001)interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy.Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the(0001)interface.As such it enhances interfacial connectivity and improves the electrical transport properties.Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient.Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient,the maximum power factor of the Bi_(1.8)Sb_(0.2)Te_(3)nanoflake films reaches 1.72 mW m^(−1)K^(−2),which is 43%higher than that of a pure Bi_(2)Te_(3)thin film.
文摘This study explored the performances of CZTS-based thin-film solar cell with three novel buffer layer materials ZnS, CdS, and CdZnS, as well as with variation in thickness of buffer and absorber-layer, doping concentrations of absorber-layer material and operating temperature. Our aims focused to identify the most optimal thin-film solar cell structure that offers high efficiency and lower toxicity which are desirable for sustainable and eco-friendly energy sources globally. SCAPS-1D, widely used software for modeling and simulating solar cells, has been used and solar cell fundamental performance parameters such as open-circuited voltage (), short-circuited current density (), fill-factor() and efficiency() have been optimized in this study. Based on our simulation results, it was found that CZTS solar cell with Cd<sub>0.4</sub>Zn<sub>0.6</sub>S as buffer-layer offers the most optimal combination of high efficiency and lower toxicity in comparison to other structure investigated in our study. Although the efficiency of Cd<sub>0.4</sub>Zn<sub>0.6</sub>S, ZnS and CdS are comparable, Cd<sub>0.4</sub>Zn<sub>0.6</sub>S is preferable to use as buffer-layer for its non-toxic property. In addition, evaluation of performance as a function of buffer-layer thickness for Cd<sub>0.4</sub>Zn<sub>0.6</sub>S, ZnS and CdS showed that optimum buffer-layer thickness for Cd<sub>0.4</sub>Zn<sub>0.6</sub>S was in the range from 50 to 150nm while ZnS offered only 50 – 75 nm. Furthermore, the temperature dependence performance parameters evaluation revealed that it is better to operate solar cell at temperature 290K for stable operation with optimum performances. This study would provide valuable insights into design and optimization of nanotechnology-based solar energy technology for minimizing global energy crisis and developing eco-friendly energy sources sustainable and simultaneously.
文摘AlN was used as a host material and doped with Eu grown on Si substrate by pulsed laser deposition (PLD) with low substrate temperature. The X-ray diffraction (XRD) data revealed the orientation and the composition of the thin film. The surface morphology was studied by scanning electron microscope (SEM). While raising the annealing temperatures from 300˚C to 900˚C, the emission was observed from AlN: Eu under excitation of 260 nm excitation. The photoluminescence (PL) was integrated over the visible light wavelength shifted from the blue to the red zone in the CIE 1931 chromaticity coordinates. The luminescence color coordination of AlN: Eu depending on the annealing temperatures guides the further study of Eu-doped nitrides manufacturing on white light emitting diode (LED) and full color LED devices.