Plastic limit load of viscoplastic thick-walled cylinder and spherical shell subjected to internal pressure is investigated analytically using a strain gradient plasticity theory. As a result, the current solutions ca...Plastic limit load of viscoplastic thick-walled cylinder and spherical shell subjected to internal pressure is investigated analytically using a strain gradient plasticity theory. As a result, the current solutions can capture the size effect at the micron scale. Numerical results show that the smaller the inner radius of the cylinder or spherical shell, the more significant the scale effects. Results also show that the size effect is more evident with increasing strain or strain-rate sensitivity index. The classical plastic-based solutions of the same problems are shown to be a special case of the present solution.展开更多
We suppose that in order to maintain high accuracy of holes and to lower residual stresses after cold expansion of thick-walled cylinders, which undergo cross-section plastic deformation, it is necessary to perform ax...We suppose that in order to maintain high accuracy of holes and to lower residual stresses after cold expansion of thick-walled cylinders, which undergo cross-section plastic deformation, it is necessary to perform axial plastic compression and subsequent cold expansion with small interferences. To test this hypothesis, we studied hoop, radial and axial residual stresses in cylinders made of carbon steel AISI 1050 with hole diameter of 5 mm, outer diameter of 15 mm and length of 30 mm by Sachs method as well as accuracy of expanded holes. It is found that double cold expansion with total interference equal to 5.1% generates hoop residual stresses with largest absolute value equal to 284 MPa and ensures high holes accuracy(IT7). After plastic compression with strain equal to 0.5 and 1% the mentioned stresses reduced to 120 and 75 MPa respectively,and accuracy of the holes reduced as well. Subsequent cold expansion with small interference equal to 0.9% helps to restore holes accuracy(IT7)gained by double cold expansion and ensure that absolute value of hoop residual stresses(177 MPa) is lower compared to double cold expansion.展开更多
The mold filling process of titanium alloy in a thin-walled cylinder cavity under vertical centrifugal casting process was studied by means of the hydraulic simulation experiments. Results show that the filling mode o...The mold filling process of titanium alloy in a thin-walled cylinder cavity under vertical centrifugal casting process was studied by means of the hydraulic simulation experiments. Results show that the filling mode of the melt in the cylinder cavity varies with casting wall-thickness. When the casting wall-thickness is less than or equal to the thickness of the first layer during the filling process, the melts fill the cavity from the bottom to the top.When the casting wall-thickness is greater than the thickness of the first layer during the filling process, the melts first fill the largest radius parts of the cavity with a certain thickness of the first layer from the bottom to the top of the cavity, and then they fill the cavity from the larger radius part to the smaller radius part. The melt filling ability increases with the increment of the mold rotational speed and the pouring temperature. In another aspect, the melt filling ability rises with the decrement of the melt viscosity, and the melt with the better filling ability is prone to fill the cylinder cavity layer by layer.展开更多
A dynamical moving pressure structural numerical calculation model using the internal ballistics calculation pressure-time results was constituted and the vicinity of the internal ballistics and quasiinternal ballisti...A dynamical moving pressure structural numerical calculation model using the internal ballistics calculation pressure-time results was constituted and the vicinity of the internal ballistics and quasiinternal ballistics structural model was checked. The Von Mises stresses obtained by the dynamical structural numerical model calculations and the Von Mises stresses calculated from the shot test strain measurements were compared. The difference for the worse case was 20% and for the best case was 0.1%.Furthermore, the model gave better agreement for the higher charge masses. The numerical structural quasi-internal ballistics computation model created was verified for the top charge mass which represents the highest stress condition and used in a gun barrel design.展开更多
Dynamic stress intensity factors are evaluated for thick-walled cylinder with a radial edge crack under internal impulsive pressure. Firstly, the equation for stress intensity factors under static uniform pressure is ...Dynamic stress intensity factors are evaluated for thick-walled cylinder with a radial edge crack under internal impulsive pressure. Firstly, the equation for stress intensity factors under static uniform pressure is used as the reference case, and then the weight function for a thick-walled cylinder containing a radial edge crack can be worked out. Secondly, the dynamic stresses in uncracked thick-walled cylinders are solved under internal impulsive pressure by using mode shape function method. The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary condi- tions, and the history and distribution of dynamic stresses in thick-walled cylinders are derived in terms of Fourier-Bessel series. Finally, the dynamic stress intensity factor equations for thick-walled cylinder containing a radial edge crack sub- jected to internal impulsive pressure are given by dynamic weight function method. The finite element method is utilized to verify the results of numerical examples, showing the validity and feasibility of the proposed method.展开更多
At several mineral exploration drilling sites in Australia, weakly consolidated formations mainly consistof sand particles that are poorly bonded by cementing agents such as clay, iron oxide cement or calcite.These fo...At several mineral exploration drilling sites in Australia, weakly consolidated formations mainly consistof sand particles that are poorly bonded by cementing agents such as clay, iron oxide cement or calcite.These formations are being encountered when drilling boreholes to the depth of up to 2 0 0 m. To studythe behaviour of these materials, thick-walled hollow cylinder (TWHC) and solid cylindrical syntheticspecimens were designed and prepared by adding Portland cement and water to sand grains. The effectsof different parameters such as water and cement contents, grain size distribution and mixture curingtime on the characteristics of the samples were studied to identify the mixture closely resembling theformation at the drilling site. The Hoek triaxia! cell was modified to allow the visual monitoring of graindebonding and borehole breakout processes during the laboratory tests. The results showed the significanceof real-time visual monitoring in determining the initiation of the borehole breakout. The sizescaleeffect study on TWHC specimens revealed that with the increasing borehole size, the ductility ofthe specimen decreases, however, the axial and lateral stiffnesses of the TWHC specimen remain unchanged.Under different confining pressures the lateral strain at the initiation point of boreholebreakout is considerably lower in a larger size borehole (2 0 mm) compared to that in a smaller one(10 mm). Also, it was observed that the level of peak strength increment in TWHC specimens decreaseswith the increasing confining pressure.展开更多
Today, improving the weight/load carrying capacity ratio of a part is the matter of studies in most of the scientific and industrial areas.Autofrettage dimensions, the amount of material removed from outer and inner r...Today, improving the weight/load carrying capacity ratio of a part is the matter of studies in most of the scientific and industrial areas.Autofrettage dimensions, the amount of material removed from outer and inner radius while manufacturing and the service pressure applied affect the residual stress distribution throughout the wall thickness and hence the load-bearing capacity of a thick-walled cylinder. Calculation of residual stresses after autofrettage process and optimization of autofrettage outline dimensions by using the amount of service pressures applied are common issues in literature.In this study, mandrel-cylinder tube interference dimensions were renovated by using traditional methods for swage autofrettage process of a gun barrel. Also, the residual stresses in the cylinder after autofrettage process, inside and outside material removal process and the variable service pressure throughout the cylinder applied were taken into consideration and incorporated into the design. By using the constrained optimization method, wall thickness(thus the weight) was optimized(minimized)to achieve the specified safety factor along the length of the cylinder. For the same cylinder, the results of the suggested analytical/with residual stress calculation approach were compared to analytical/without residual stress calculation results and numerical topology optimization method calculation results. Since the experimental measurement results are not yet available, it was not possible to compare them with the calculation results.The suggested approach enabled 22.9% extra weight reduction in proportion to numerical topology optimization and enabled 4.2% extra weight reduction in proportion to analytical/without residual stress optimization.Using this approach, the gain from residual stresses after autofrettage operation, the loss of residual stresses after material removal, and the effects of service pressures can be taken into account for each stage of design.展开更多
Unlike most previous studies on the transverse vortex-induced vibration(VlV) of a cylinder mainly under the wallfree condition (Williamson & Govardhan, 2004), this paper experimentally investigates the vortex-ind...Unlike most previous studies on the transverse vortex-induced vibration(VlV) of a cylinder mainly under the wallfree condition (Williamson & Govardhan, 2004), this paper experimentally investigates the vortex-induced vibration of a cylinder with two degrees of freedom near a rigid wall exposed to steady flow. The amplitude and frequency responses of the cylinder are discussed. The lee wake flow patterns of the cylinder undergoin^g VIV were visualized by employing the hydrogen bubble technique. The effects of the gap-to-diameter ratio (eo/D) and the mass ratio on the vibration amplitude and frequency are analyzed. Comparisons of VIV response of the cylinder are made between one degree (only transverse) and two degrees of freedom (streamwise and transverse) and those between the present study and previous ones. The experimental observation indicates that there are two types of streamwise vibration, i.e. the first streamwise vibration (FSV) with small amplitude and the second streamwise vibration (SSV) which coexists with transverse vibration. The vortex shedding pattern for the FSV is approximately syrmnetric and that for the SSV is ahernate. The first streamwise vibration tends to disappear with the decrease of eo/D. For the case of large gap-to-dianeter ratios ( e.g. eo/D = 0. 54 ~ 1.58), the maximum amplitudes of the second streamwise vibration and transverse one increase with the increasing gap- to-diameter ratio. But for the case of small gap-to-diameter ratios (e. g. eo/D= 0. 16, 0.23), the vibration amplitude of the cylinder increases slowly at the initial stage (i.e. at small reduced velocity Vr), and across the maximum amplitude it decreases quickly at the last stage (i.e. at large Vr). Within the range of the examined small mass ratio (m 〈 4), both streamwise and transverse vibration amplitude of the cylinder decrease with the increase of mass ratio for the fixed value of Vr- The vibration range ( in terms of Vr) tends to widen with the decrease of the mass ratio. In the second streamwise vibration region, the vibration frequency of the cylinder with a small mass ratio ( e.g. mx = 1.44) undergoes a jump at a certain Vr+ The maximum amplitudes of the transverse vibration for two-degree-of-freedom case is larger than that for one-degree-of-freedom case, but the transverse vibration frequency of the cylinder with two degrees of freedom is lower than that with one degree of freedom(transverse).展开更多
The behavior of vortex-induced vibration of a two-degree-of-freedom cylinder near a deformable wall in steady flow is investigated experimentally. The typical phenomenon of the two-degree-of-freedom cylinder's VIV is...The behavior of vortex-induced vibration of a two-degree-of-freedom cylinder near a deformable wall in steady flow is investigated experimentally. The typical phenomenon of the two-degree-of-freedom cylinder's VIV is discussed. The influences of initial gap between the cylinder and the wall on the dynamic responses of the cylinder are analyzed. The comparison is made about dynamic responses of the cylinder with one and two degrees of freedom. Experimental results show that the vibration of the cylinder near a deformable wall with a small value of initial gap-to-diameter ratios can generally be divided into two phases. The initial gap-to-diameter ratios have a noticeable influence on the occurrence of transverse vibration. The transverse maximum amplitude of the cylinder with two degrees of freedom is larger than that of the cylinder with one degree of freedom under the condition with the same values of other parameters. However, the vibration frequency of the cylinder for the two degrees of freedom case is smaller than that for the one degree of freedom case at the same value of Vr number展开更多
The large-diameter cylinder structure, which is made of large successive bottomless cylinders placed on foundation bed or partly driven into soil, is a recently developed retaining structure in China. It can be used i...The large-diameter cylinder structure, which is made of large successive bottomless cylinders placed on foundation bed or partly driven into soil, is a recently developed retaining structure in China. It can be used in port, coastal and offshore works. The method for stability analysis of the large-diameter cylinder structure, especially for stability analysis of the embedded large-diameter cylinder structure, is an important issue. In this paper, an idea is presented that is, embedded large-diameter cylinder quays can be divided into two types, i.e. the gravity wall type and the cylinder pile wall type. A method for stability analysis of the large-diameter cylinder quay of the cylinder pile wall type is developed and a method for stability analysis of the large-diameter cylinder quay of the gravity wall type is also proposed. The effect of significant parameters on the stability of the large-diameter cylinder quay of the cylinder pile wall type is investigated through numerical calculation.展开更多
Based on the loading conditions of engine, applying difference method to solve the hydrodynamic lubrication equation of piston skirt movement, the force acting on piston skirt and the moment on wrist pin were obtained...Based on the loading conditions of engine, applying difference method to solve the hydrodynamic lubrication equation of piston skirt movement, the force acting on piston skirt and the moment on wrist pin were obtained. A computer program for simulating the piston second order motion was conducted to calculate the lateral motion of the upper part and the bottom part of piston skirts of the engine of automotive model CA1091. From the simulated result, the maximal impacting phase and the maximal impacting region of the piston were obtained. The result can be used for designing engine, diagnosing the noise of piston knocking cylinder wall and explaining many practical fault phenomena in theory.展开更多
In this paper, the principle of mirror image is used to transform the problem of wave diffraction from a circular cylinder in front of orthogonal vertical walls into the problem of diffraction of four symmetric incide...In this paper, the principle of mirror image is used to transform the problem of wave diffraction from a circular cylinder in front of orthogonal vertical walls into the problem of diffraction of four symmetric incident waves from four symmetrically arranged circular cylinders, and then the eigenfunction expansion of velocity potential and Grafs addition theorem are used to give the analytical solution to the wave diffraction problem. The relation of the total wave force on cylinder to the distance between the cylinder and orthogonal vertical walls and the incidence angle of wave is also studied by numerical computation.展开更多
The massively separated flow past triple cylin- ders (TriC) in tandem arrangement is simulated using the improved delayed detached-eddy simulation (IDDES) method based on the shear stress transport (SST) model, ...The massively separated flow past triple cylin- ders (TriC) in tandem arrangement is simulated using the improved delayed detached-eddy simulation (IDDES) method based on the shear stress transport (SST) model, coupled with the high order adaptive dissipation scheme. The spacing between adjacent cylinders is sub-critical (1.435D). IDDES prediction of two cylinders (TC) with the same spacing is compared to experimental data for validation, and the numerical results agree well with the available measurements, except for the asymmetry in the gap region. The flow past TriC is investigated using the same method. Generally, the mean flow quantities past TriC, such as the velocity, pressure, and vorticity, are similar to the corresponding components of TC. However, the pressure fluctuations on the TriC surface are uniformly larger than those on TC. Meanwhile, the instantaneous flows past TriC are much more complex. The periodical blockage in the first gap region is found in the TriC case and leads to the up-and-down movement of shear layer in the second gap region.展开更多
Autofrettage is an effective measure to even distribution of stresses and raise load-bearing capacity for (ultra-)high pressure apparatus. Currently, the research on autofrettage has focused mostly on specific engin...Autofrettage is an effective measure to even distribution of stresses and raise load-bearing capacity for (ultra-)high pressure apparatus. Currently, the research on autofrettage has focused mostly on specific engineering problems, while general theoretical study is rarely done. To discover the general law contained in autofrettage theory, by the aid of the authors’ previous work and according to the third strength theory, theoretical problems about autofrettage are studied including residual stresses and their equivalent stress, total stresses and their equivalent stress, etc. Because of the equation of optimum depth of plastic zone which is presented in the authors’ previous work, the equations for the residual stresses and their equivalent stress as well as the total stress and their equivalent stress are simplified greatly. Thus the law of distribution of the residual stresses and their equivalent stress as well as the total stress and their equivalent stress and the varying tendency of these stresses are discovered. The relation among various parameters are revealed. The safe and optimum load-bearing conditions for cylinders are obtained. According to the results obtained by theoretical analysis, it is shown that if the two parameters, namely ratio of outside to inside radius, k, and depth of plastic zone, kj, meet the equation of optimum depth of plastic zone, when the pressure contained in an autofrettaged cylinder is lower than two times the initial yield pressure of the unautofrettaged cylinder, the equivalent residual stress and the equivalent total stress at the inside surface as well as the elastic-plastic juncture of a cylinder are lower than yield strength. When an autofrettaged cylinder is subjected to just two times the initial yield pressure of the unautofrettaged cylinder, the equivalent total stress within the whole plastic zone is just identically equal to the yield strength, or it is a constant. The proposed research theoretically depicts the stress state of ultra-)high pressure autofrettaged cylinder more accurately and more reasonably and provides the reference for design of (ultra-)high pressure apparatus.展开更多
Cylinder-crown integrated hydraulic press( CCIHP) is a new press structure. The hemispherical hydraulic cylinder also functions as a main portion of crown,which has lower weight and higher section modulus compared wit...Cylinder-crown integrated hydraulic press( CCIHP) is a new press structure. The hemispherical hydraulic cylinder also functions as a main portion of crown,which has lower weight and higher section modulus compared with the conventional hydraulic cylinder and press crown. In order to design cylinder-crown integrated hydraulic press with large capacity, the theoretical design of hemispherical hydraulic cylinder was first proposed,and the structural parameters of 150 MN CCIHP were listed. Then the simulation was carried out to analyze the stress and deformation of CCIHP,and weight comparison was conducted between CCIHP and conventional press. It is shown that the weight reduction for hydraulic cylinder and press crown is about 20% compared with that for conventional press,and the stress and deformation are both within the range of constraints including strength and stiffness conditions. It is possible to manufacture cylinder-crown integrated hydraulic press with large capacity.展开更多
In the calculation of submarine air conditioning load of the early stage, the obtained heat is regarded as cooling load. The confusion of the two words causing the cooling load figured out is abnormally high, and the ...In the calculation of submarine air conditioning load of the early stage, the obtained heat is regarded as cooling load. The confusion of the two words causing the cooling load figured out is abnormally high, and the change of air conditioning cooling load can not be indicated. In accordance with submarine structure and heat transfer characteristics of its inner components, Laplace transformation to heat conduction differential equation of cylinder wall is carried out. The dynamic calculation of submarine conditioning load based on this model is also conducted, and the results of calculation are compared with those of static cooling load calculation. It is concluded that the dynamic cooling load calculation methods can illustrate the change of submarine air conditioning cooling load more accurate than the static one.展开更多
In order to balance the contradiction between the demand of high precision and that of short time interval of model computing for the power plant simulator, a set of simulated mathematical models are constructed. The ...In order to balance the contradiction between the demand of high precision and that of short time interval of model computing for the power plant simulator, a set of simulated mathematical models are constructed. The model describes the cylinder wall temperature located at four key positions of the high pressure cylinder. The simulated model is confirmed to be not only simple but also precise via comparison between the simulated results and the autoptic data of a power plant.展开更多
In a microfluidic system, flow slip velocity on a solid wall can be the same order of magnitude as the average velocity in a microchannel. The flow-electricity interaction in a complex microfluidic system subjected to...In a microfluidic system, flow slip velocity on a solid wall can be the same order of magnitude as the average velocity in a microchannel. The flow-electricity interaction in a complex microfluidic system subjected to joint action of wall slip and electro-viscous effect is an important topic. This paper presents an analytic solution of pressuredriven liquid flow velocity and flow-induced electric field in a two-dimensional microchannel made of different materials with wall slip and electro-viscous effects. The Poisson- Boltzmann equation and the Navier-Stokes equation are solved for the analytic solutions. The analytic solutions agree well with the numerical solutions. It was found that the wall slip amplifies the fow-induced electric field and enhances the electro-viscous effect on flow. Thus the electro-viscous effect can be significant in a relatively wide microchannel with relatively large kh, the ratio of channel width to thickness of electric double layer, in comparison with the channel without wall slip.展开更多
基金supported by the Ph. D. Programs Foundation of Ministry of Education of China(No. 20050403002)
文摘Plastic limit load of viscoplastic thick-walled cylinder and spherical shell subjected to internal pressure is investigated analytically using a strain gradient plasticity theory. As a result, the current solutions can capture the size effect at the micron scale. Numerical results show that the smaller the inner radius of the cylinder or spherical shell, the more significant the scale effects. Results also show that the size effect is more evident with increasing strain or strain-rate sensitivity index. The classical plastic-based solutions of the same problems are shown to be a special case of the present solution.
基金Lyudmila Petrova for invaluable metrological support. A.I.D. also thanks RFBR grant no. 15-08-01511a
文摘We suppose that in order to maintain high accuracy of holes and to lower residual stresses after cold expansion of thick-walled cylinders, which undergo cross-section plastic deformation, it is necessary to perform axial plastic compression and subsequent cold expansion with small interferences. To test this hypothesis, we studied hoop, radial and axial residual stresses in cylinders made of carbon steel AISI 1050 with hole diameter of 5 mm, outer diameter of 15 mm and length of 30 mm by Sachs method as well as accuracy of expanded holes. It is found that double cold expansion with total interference equal to 5.1% generates hoop residual stresses with largest absolute value equal to 284 MPa and ensures high holes accuracy(IT7). After plastic compression with strain equal to 0.5 and 1% the mentioned stresses reduced to 120 and 75 MPa respectively,and accuracy of the holes reduced as well. Subsequent cold expansion with small interference equal to 0.9% helps to restore holes accuracy(IT7)gained by double cold expansion and ensure that absolute value of hoop residual stresses(177 MPa) is lower compared to double cold expansion.
基金financially supported by the National Natural Science Foundation of China(Grant No.51475120)the Project of Science and Technology of Henan Province of China(2018QNJH25,182102110096)
文摘The mold filling process of titanium alloy in a thin-walled cylinder cavity under vertical centrifugal casting process was studied by means of the hydraulic simulation experiments. Results show that the filling mode of the melt in the cylinder cavity varies with casting wall-thickness. When the casting wall-thickness is less than or equal to the thickness of the first layer during the filling process, the melts fill the cavity from the bottom to the top.When the casting wall-thickness is greater than the thickness of the first layer during the filling process, the melts first fill the largest radius parts of the cavity with a certain thickness of the first layer from the bottom to the top of the cavity, and then they fill the cavity from the larger radius part to the smaller radius part. The melt filling ability increases with the increment of the mold rotational speed and the pouring temperature. In another aspect, the melt filling ability rises with the decrement of the melt viscosity, and the melt with the better filling ability is prone to fill the cylinder cavity layer by layer.
基金Ministry of Science, Industry, and Technology which supported this project under the Industrial Thesis Support Program
文摘A dynamical moving pressure structural numerical calculation model using the internal ballistics calculation pressure-time results was constituted and the vicinity of the internal ballistics and quasiinternal ballistics structural model was checked. The Von Mises stresses obtained by the dynamical structural numerical model calculations and the Von Mises stresses calculated from the shot test strain measurements were compared. The difference for the worse case was 20% and for the best case was 0.1%.Furthermore, the model gave better agreement for the higher charge masses. The numerical structural quasi-internal ballistics computation model created was verified for the top charge mass which represents the highest stress condition and used in a gun barrel design.
基金supported by the China Aviation Industry Corporation I Program (ATPD-1104-02).
文摘Dynamic stress intensity factors are evaluated for thick-walled cylinder with a radial edge crack under internal impulsive pressure. Firstly, the equation for stress intensity factors under static uniform pressure is used as the reference case, and then the weight function for a thick-walled cylinder containing a radial edge crack can be worked out. Secondly, the dynamic stresses in uncracked thick-walled cylinders are solved under internal impulsive pressure by using mode shape function method. The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary condi- tions, and the history and distribution of dynamic stresses in thick-walled cylinders are derived in terms of Fourier-Bessel series. Finally, the dynamic stress intensity factor equations for thick-walled cylinder containing a radial edge crack sub- jected to internal impulsive pressure are given by dynamic weight function method. The finite element method is utilized to verify the results of numerical examples, showing the validity and feasibility of the proposed method.
基金supported by the Deep Exploration Technologies Cooperative Research Centre whose activities are funded by the Australian Government’s Research Programme
文摘At several mineral exploration drilling sites in Australia, weakly consolidated formations mainly consistof sand particles that are poorly bonded by cementing agents such as clay, iron oxide cement or calcite.These formations are being encountered when drilling boreholes to the depth of up to 2 0 0 m. To studythe behaviour of these materials, thick-walled hollow cylinder (TWHC) and solid cylindrical syntheticspecimens were designed and prepared by adding Portland cement and water to sand grains. The effectsof different parameters such as water and cement contents, grain size distribution and mixture curingtime on the characteristics of the samples were studied to identify the mixture closely resembling theformation at the drilling site. The Hoek triaxia! cell was modified to allow the visual monitoring of graindebonding and borehole breakout processes during the laboratory tests. The results showed the significanceof real-time visual monitoring in determining the initiation of the borehole breakout. The sizescaleeffect study on TWHC specimens revealed that with the increasing borehole size, the ductility ofthe specimen decreases, however, the axial and lateral stiffnesses of the TWHC specimen remain unchanged.Under different confining pressures the lateral strain at the initiation point of boreholebreakout is considerably lower in a larger size borehole (2 0 mm) compared to that in a smaller one(10 mm). Also, it was observed that the level of peak strength increment in TWHC specimens decreaseswith the increasing confining pressure.
基金Ministry of Science, Industry, and Technology which supported the project under the Industrial Thesis Support Program
文摘Today, improving the weight/load carrying capacity ratio of a part is the matter of studies in most of the scientific and industrial areas.Autofrettage dimensions, the amount of material removed from outer and inner radius while manufacturing and the service pressure applied affect the residual stress distribution throughout the wall thickness and hence the load-bearing capacity of a thick-walled cylinder. Calculation of residual stresses after autofrettage process and optimization of autofrettage outline dimensions by using the amount of service pressures applied are common issues in literature.In this study, mandrel-cylinder tube interference dimensions were renovated by using traditional methods for swage autofrettage process of a gun barrel. Also, the residual stresses in the cylinder after autofrettage process, inside and outside material removal process and the variable service pressure throughout the cylinder applied were taken into consideration and incorporated into the design. By using the constrained optimization method, wall thickness(thus the weight) was optimized(minimized)to achieve the specified safety factor along the length of the cylinder. For the same cylinder, the results of the suggested analytical/with residual stress calculation approach were compared to analytical/without residual stress calculation results and numerical topology optimization method calculation results. Since the experimental measurement results are not yet available, it was not possible to compare them with the calculation results.The suggested approach enabled 22.9% extra weight reduction in proportion to numerical topology optimization and enabled 4.2% extra weight reduction in proportion to analytical/without residual stress optimization.Using this approach, the gain from residual stresses after autofrettage operation, the loss of residual stresses after material removal, and the effects of service pressures can be taken into account for each stage of design.
基金supported by the Eleventh Five-Year Plan of Chinese Academy of Sciences(Grant No.KJCX2-YW-L02) the National Natural Science Foundation of China (Grant No.50509022)
文摘Unlike most previous studies on the transverse vortex-induced vibration(VlV) of a cylinder mainly under the wallfree condition (Williamson & Govardhan, 2004), this paper experimentally investigates the vortex-induced vibration of a cylinder with two degrees of freedom near a rigid wall exposed to steady flow. The amplitude and frequency responses of the cylinder are discussed. The lee wake flow patterns of the cylinder undergoin^g VIV were visualized by employing the hydrogen bubble technique. The effects of the gap-to-diameter ratio (eo/D) and the mass ratio on the vibration amplitude and frequency are analyzed. Comparisons of VIV response of the cylinder are made between one degree (only transverse) and two degrees of freedom (streamwise and transverse) and those between the present study and previous ones. The experimental observation indicates that there are two types of streamwise vibration, i.e. the first streamwise vibration (FSV) with small amplitude and the second streamwise vibration (SSV) which coexists with transverse vibration. The vortex shedding pattern for the FSV is approximately syrmnetric and that for the SSV is ahernate. The first streamwise vibration tends to disappear with the decrease of eo/D. For the case of large gap-to-dianeter ratios ( e.g. eo/D = 0. 54 ~ 1.58), the maximum amplitudes of the second streamwise vibration and transverse one increase with the increasing gap- to-diameter ratio. But for the case of small gap-to-diameter ratios (e. g. eo/D= 0. 16, 0.23), the vibration amplitude of the cylinder increases slowly at the initial stage (i.e. at small reduced velocity Vr), and across the maximum amplitude it decreases quickly at the last stage (i.e. at large Vr). Within the range of the examined small mass ratio (m 〈 4), both streamwise and transverse vibration amplitude of the cylinder decrease with the increase of mass ratio for the fixed value of Vr- The vibration range ( in terms of Vr) tends to widen with the decrease of the mass ratio. In the second streamwise vibration region, the vibration frequency of the cylinder with a small mass ratio ( e.g. mx = 1.44) undergoes a jump at a certain Vr+ The maximum amplitudes of the transverse vibration for two-degree-of-freedom case is larger than that for one-degree-of-freedom case, but the transverse vibration frequency of the cylinder with two degrees of freedom is lower than that with one degree of freedom(transverse).
基金supported by the National Natural Science Foundation of China (Grant No. 10902112)
文摘The behavior of vortex-induced vibration of a two-degree-of-freedom cylinder near a deformable wall in steady flow is investigated experimentally. The typical phenomenon of the two-degree-of-freedom cylinder's VIV is discussed. The influences of initial gap between the cylinder and the wall on the dynamic responses of the cylinder are analyzed. The comparison is made about dynamic responses of the cylinder with one and two degrees of freedom. Experimental results show that the vibration of the cylinder near a deformable wall with a small value of initial gap-to-diameter ratios can generally be divided into two phases. The initial gap-to-diameter ratios have a noticeable influence on the occurrence of transverse vibration. The transverse maximum amplitude of the cylinder with two degrees of freedom is larger than that of the cylinder with one degree of freedom under the condition with the same values of other parameters. However, the vibration frequency of the cylinder for the two degrees of freedom case is smaller than that for the one degree of freedom case at the same value of Vr number
基金by the National Natural Science Foundation of China(Grant No.59679003)the Natural Science Foundation of Tianjin(Grant No.973606311)
文摘The large-diameter cylinder structure, which is made of large successive bottomless cylinders placed on foundation bed or partly driven into soil, is a recently developed retaining structure in China. It can be used in port, coastal and offshore works. The method for stability analysis of the large-diameter cylinder structure, especially for stability analysis of the embedded large-diameter cylinder structure, is an important issue. In this paper, an idea is presented that is, embedded large-diameter cylinder quays can be divided into two types, i.e. the gravity wall type and the cylinder pile wall type. A method for stability analysis of the large-diameter cylinder quay of the cylinder pile wall type is developed and a method for stability analysis of the large-diameter cylinder quay of the gravity wall type is also proposed. The effect of significant parameters on the stability of the large-diameter cylinder quay of the cylinder pile wall type is investigated through numerical calculation.
文摘Based on the loading conditions of engine, applying difference method to solve the hydrodynamic lubrication equation of piston skirt movement, the force acting on piston skirt and the moment on wrist pin were obtained. A computer program for simulating the piston second order motion was conducted to calculate the lateral motion of the upper part and the bottom part of piston skirts of the engine of automotive model CA1091. From the simulated result, the maximal impacting phase and the maximal impacting region of the piston were obtained. The result can be used for designing engine, diagnosing the noise of piston knocking cylinder wall and explaining many practical fault phenomena in theory.
基金financially supported by the National Natural Science Foundation of China(Grant No.50025924).
文摘In this paper, the principle of mirror image is used to transform the problem of wave diffraction from a circular cylinder in front of orthogonal vertical walls into the problem of diffraction of four symmetric incident waves from four symmetrically arranged circular cylinders, and then the eigenfunction expansion of velocity potential and Grafs addition theorem are used to give the analytical solution to the wave diffraction problem. The relation of the total wave force on cylinder to the distance between the cylinder and orthogonal vertical walls and the incidence angle of wave is also studied by numerical computation.
基金supported by the National Natural Science Foundation of China (Grant 11372159)
文摘The massively separated flow past triple cylin- ders (TriC) in tandem arrangement is simulated using the improved delayed detached-eddy simulation (IDDES) method based on the shear stress transport (SST) model, coupled with the high order adaptive dissipation scheme. The spacing between adjacent cylinders is sub-critical (1.435D). IDDES prediction of two cylinders (TC) with the same spacing is compared to experimental data for validation, and the numerical results agree well with the available measurements, except for the asymmetry in the gap region. The flow past TriC is investigated using the same method. Generally, the mean flow quantities past TriC, such as the velocity, pressure, and vorticity, are similar to the corresponding components of TC. However, the pressure fluctuations on the TriC surface are uniformly larger than those on TC. Meanwhile, the instantaneous flows past TriC are much more complex. The periodical blockage in the first gap region is found in the TriC case and leads to the up-and-down movement of shear layer in the second gap region.
基金supported by Scientific Research Fund of Hunan Provincial Education Department(Grant No. 12A087)Innovation Fund for Technology Based Firms(Grant No. 09C26214305047)
文摘Autofrettage is an effective measure to even distribution of stresses and raise load-bearing capacity for (ultra-)high pressure apparatus. Currently, the research on autofrettage has focused mostly on specific engineering problems, while general theoretical study is rarely done. To discover the general law contained in autofrettage theory, by the aid of the authors’ previous work and according to the third strength theory, theoretical problems about autofrettage are studied including residual stresses and their equivalent stress, total stresses and their equivalent stress, etc. Because of the equation of optimum depth of plastic zone which is presented in the authors’ previous work, the equations for the residual stresses and their equivalent stress as well as the total stress and their equivalent stress are simplified greatly. Thus the law of distribution of the residual stresses and their equivalent stress as well as the total stress and their equivalent stress and the varying tendency of these stresses are discovered. The relation among various parameters are revealed. The safe and optimum load-bearing conditions for cylinders are obtained. According to the results obtained by theoretical analysis, it is shown that if the two parameters, namely ratio of outside to inside radius, k, and depth of plastic zone, kj, meet the equation of optimum depth of plastic zone, when the pressure contained in an autofrettaged cylinder is lower than two times the initial yield pressure of the unautofrettaged cylinder, the equivalent residual stress and the equivalent total stress at the inside surface as well as the elastic-plastic juncture of a cylinder are lower than yield strength. When an autofrettaged cylinder is subjected to just two times the initial yield pressure of the unautofrettaged cylinder, the equivalent total stress within the whole plastic zone is just identically equal to the yield strength, or it is a constant. The proposed research theoretically depicts the stress state of ultra-)high pressure autofrettaged cylinder more accurately and more reasonably and provides the reference for design of (ultra-)high pressure apparatus.
基金Sponsored by the High-end CNC Machine Tools and Basic Manufacturing Equipment Technology Major Project(Grant No.2011ZX04001-011)
文摘Cylinder-crown integrated hydraulic press( CCIHP) is a new press structure. The hemispherical hydraulic cylinder also functions as a main portion of crown,which has lower weight and higher section modulus compared with the conventional hydraulic cylinder and press crown. In order to design cylinder-crown integrated hydraulic press with large capacity, the theoretical design of hemispherical hydraulic cylinder was first proposed,and the structural parameters of 150 MN CCIHP were listed. Then the simulation was carried out to analyze the stress and deformation of CCIHP,and weight comparison was conducted between CCIHP and conventional press. It is shown that the weight reduction for hydraulic cylinder and press crown is about 20% compared with that for conventional press,and the stress and deformation are both within the range of constraints including strength and stiffness conditions. It is possible to manufacture cylinder-crown integrated hydraulic press with large capacity.
文摘In the calculation of submarine air conditioning load of the early stage, the obtained heat is regarded as cooling load. The confusion of the two words causing the cooling load figured out is abnormally high, and the change of air conditioning cooling load can not be indicated. In accordance with submarine structure and heat transfer characteristics of its inner components, Laplace transformation to heat conduction differential equation of cylinder wall is carried out. The dynamic calculation of submarine conditioning load based on this model is also conducted, and the results of calculation are compared with those of static cooling load calculation. It is concluded that the dynamic cooling load calculation methods can illustrate the change of submarine air conditioning cooling load more accurate than the static one.
文摘In order to balance the contradiction between the demand of high precision and that of short time interval of model computing for the power plant simulator, a set of simulated mathematical models are constructed. The model describes the cylinder wall temperature located at four key positions of the high pressure cylinder. The simulated model is confirmed to be not only simple but also precise via comparison between the simulated results and the autoptic data of a power plant.
基金supported by the National Natural Science Foundation of China(10872076)
文摘In a microfluidic system, flow slip velocity on a solid wall can be the same order of magnitude as the average velocity in a microchannel. The flow-electricity interaction in a complex microfluidic system subjected to joint action of wall slip and electro-viscous effect is an important topic. This paper presents an analytic solution of pressuredriven liquid flow velocity and flow-induced electric field in a two-dimensional microchannel made of different materials with wall slip and electro-viscous effects. The Poisson- Boltzmann equation and the Navier-Stokes equation are solved for the analytic solutions. The analytic solutions agree well with the numerical solutions. It was found that the wall slip amplifies the fow-induced electric field and enhances the electro-viscous effect on flow. Thus the electro-viscous effect can be significant in a relatively wide microchannel with relatively large kh, the ratio of channel width to thickness of electric double layer, in comparison with the channel without wall slip.