A lumped parameter-rigid elastic coupled dynamic model of two-stage planetary gears for a hybrid car is established through the inter-stage coupled method,in which the supports of the ring gear of planet set Ⅱ are re...A lumped parameter-rigid elastic coupled dynamic model of two-stage planetary gears for a hybrid car is established through the inter-stage coupled method,in which the supports of the ring gear of planet set Ⅱ are represented as an elastic foundation with radial and tangential uniform distributed stiffness,and the ring gear of planet set Ⅱ is modeled as an elastic continuum body. The natural frequencies based on the eigenvalue problem of dynamic model of planetary transmission are solved and the associated vibration modes are discussed. The rules are revealed which are the influences of the ring gear elastic supports stiffness and rim thickness on natural frequencies of planetary transmission. The theoretical analysis indicates that the vibration modes of planetary transmission with thin-walled ring gear on elastic supports are classified into seven types: Ⅰ/Ⅱ stage coupled rotational mode,Ⅰ stage translational mode,Ⅰ stage planet mode,Ⅱ stage translational mode,Ⅱ stage degenerate planet mode,Ⅱ stage distinct planet mode and purely ring gear mode. For each vibration mode, its properties are summarized. The numerical solutions show that the elastic supports stiffness and rim thickness of the ring gear of planet set Ⅱ have different influences on natural frequencies.展开更多
In a microfluidic system, flow slip velocity on a solid wall can be the same order of magnitude as the average velocity in a microchannel. The flow-electricity interaction in a complex microfluidic system subjected to...In a microfluidic system, flow slip velocity on a solid wall can be the same order of magnitude as the average velocity in a microchannel. The flow-electricity interaction in a complex microfluidic system subjected to joint action of wall slip and electro-viscous effect is an important topic. This paper presents an analytic solution of pressuredriven liquid flow velocity and flow-induced electric field in a two-dimensional microchannel made of different materials with wall slip and electro-viscous effects. The Poisson- Boltzmann equation and the Navier-Stokes equation are solved for the analytic solutions. The analytic solutions agree well with the numerical solutions. It was found that the wall slip amplifies the fow-induced electric field and enhances the electro-viscous effect on flow. Thus the electro-viscous effect can be significant in a relatively wide microchannel with relatively large kh, the ratio of channel width to thickness of electric double layer, in comparison with the channel without wall slip.展开更多
In this study, we developed a general method to analytically tackle a kind of movable boundary problem from the viewpoint of energy variation. Having grouped the adhesion of a micro-beam, droplet and carbon nanotube ...In this study, we developed a general method to analytically tackle a kind of movable boundary problem from the viewpoint of energy variation. Having grouped the adhesion of a micro-beam, droplet and carbon nanotube (CNT) ring on a substrate into one framework, we used the developed line of reasoning to investigate the adhesion behaviors of these systems. Based upon the derived governing equations and transversality conditions, explicit solutions involving the critical parameters and morphologies for the three systems are successfully obtained, and then the parameter analogies and common characteristics of them are thor- oughly investigated. The presented method has been verified via the concept of energy release rate in fracture mechanics. Our analyses provide a new approach for exploring the mechanism of different systems with similarities as well as for understanding the unity of nature. The analysis results may be beneficial for the design of nano-structured materi- als, and hold potential for enhancing their mechanical, chemical, optical and electronic properties.展开更多
Research on compact manufacturing technology for shape and performance controllability of metallic components can reanze the simplification and high-reliability of manufacturing process on the premise of satisfying th...Research on compact manufacturing technology for shape and performance controllability of metallic components can reanze the simplification and high-reliability of manufacturing process on the premise of satisfying the requirement of macro/micro-structure. It is not only the key paths in improving performance, saving material and energy, and green manufacturing of components used in major equipments, but also the challenging subjects in frontiers of advanced plastic forming. To provide a novel horizon for the manufacturing in the critical components is significant. Focused on the high-performance large-scale components such as bearing rings, flanges, railway wheels, thick-walled pipes, etc, the conventional processes and their developing situations are summarized. The existing problems including multi-pass heating, wasting material and energy, high cost and high-emission are discussed, and the present study unable to meet the manufacturing in high-quality components is also pointed out. Thus, the new techniques related to casting-rolling compound precise forming of rings, compact manufacturing for duplex-metal composite rings, compact manufacturing for railway wheels, and casting-extruding continuous forming of thick-walled pipes are introduced in detail, respectively. The corresponding research contents, such as casting ring blank, hot ring rolling, near solid-state pressure forming, hot extruding, are elaborated. Some findings in through-thickness microstructure evolution and mechanical properties are also presented. The components produced by the new techniques are mainly characterized by fine and homogeneous grains. Moreover, the possible directions for fin'ther development of those techniques are suggested. Finally, the key scientific problems are first proposed. All of these results and conclusions have reference value and guiding significance for the integrated control of shape and performance in advanced compact manufacturing.展开更多
To investigate the chemical structure of cell wall mannan obtained from pathogenic yeast, Candida tropicalis NBRC 1400 (former antigenic standard strain, IFO 1400). As a result of two-dimensional NMR analysis, it was ...To investigate the chemical structure of cell wall mannan obtained from pathogenic yeast, Candida tropicalis NBRC 1400 (former antigenic standard strain, IFO 1400). As a result of two-dimensional NMR analysis, it was shown that the mannan of this strain is composed of α-1,6-, α-1,3-, α-1,2- and β-1,2-linked mannose residues. In this research, the mannan was subjected to three degradation procedures, acid-treatment, α-mannosidase, and acetolysis under two conditions in order to determine the chemical structure of the antigenic oligomannosyl side chains in this molecule. The 1H-nuclear magnetic resonance spectra of resultant oligosaccharides, pentaose and hexaose, demonstrated the existence of the oligomannosyl side chains corresponding to Manα1-3Manα1-2Manα1-2Manα1-2Man and Manα1-3Manα1-2Manα1-2Manα1-2Manα1-2Man, respectively, which have previously also been found in Candida albicans serotype A strain mannans. These findings indicate that C. tropicalis and C. albicans serotype A have no significant difference in the chemical structure of these cell wall mannans. Therefore, it can be interpreted that it is extremely difficult to distinguish both species by targeting the antigenic group in these mannans.展开更多
The preparation, characterization, and test of the first wall materials designed to be used in the fusion reactor have remained challenging problems in the material science. This work uses the firstprinciples method a...The preparation, characterization, and test of the first wall materials designed to be used in the fusion reactor have remained challenging problems in the material science. This work uses the firstprinciples method as implemented in the CASTEP package to study the influ ences of the doped titanium carbide on the structural sta bility of the WTiC material. The calculated total energy and enthalpy have been used as criteria to judge the structural models built with consideration of symmetry. Our simulation indicates that the doped TiC tends to form its own domain up to the investigated nanoscale, which implies a possible phase separation. This result reveals the intrinsic reason for the composite nature of the WTiC material and provides an explanation for the experimen tally observed phase separation at the nanoscale. Our approach also sheds a light on explaining the enhancing effects of doped components on the durability, reliability, corrosion resistance, etc., in many special steels.展开更多
BACKGROUND Secondary rectal linitis plastica(RLP)from prostatic adenocarcinoma is a rare and poorly understood form of metastatic spread,characterized by a desmoplastic response and concentric rectal wall infiltration...BACKGROUND Secondary rectal linitis plastica(RLP)from prostatic adenocarcinoma is a rare and poorly understood form of metastatic spread,characterized by a desmoplastic response and concentric rectal wall infiltration with mucosal preservation.This complicates endoscopic diagnosis and can mimic gastrointestinal malignancies.This case series underscores the critical role of magnetic resonance imaging(MRI)in identifying the distinct imaging features of RLP and highlights the importance of considering this condition in the differential diagnosis of patients with a history of prostate cancer.CASE SUMMARY Three patients with secondary RLP due to prostatic adenocarcinoma presented with varied clinical features.The first patient,a 76-year-old man with advanced prostate cancer,had rectal pain and incontinence.MRI showed diffuse prostatic invasion and significant rectal wall thickening with a characteristic"target sign"pattern.The second,a 57-year-old asymptomatic man with elevated prostatespecific antigen levels and a history of prostate cancer exhibited rectoprostatic angle involvement and rectal wall thickening on MRI,with positron emission tomography/computed tomography PSMA confirming the prostatic origin of the metastatic spread.The third patient,an 80-year-old post-radical prostatectomy,presented with refractory constipation.MRI revealed a neoplastic mass infiltrating the rectal wall.In all cases,MRI consistently showed stratified thickening,concentric signal changes,restricted diffusion,and contrast enhancement,which were essential for diagnosing secondary RLP.Biopsies confirmed the prostatic origin of the neoplastic involvement in the rectum.CONCLUSION Recognizing MRI findings of secondary RLP is essential for accurate diagnosis and management in prostate cancer patients.展开更多
Reaction products of 2,4,6-tris(4-phenyl-phenoxy)-1,3,5-triazine derived from 4-phenylphenol cyanate ester and phenyl glycidyl ether were analyzed. In addition to an isocyanurate compound and an oxazolidone compound w...Reaction products of 2,4,6-tris(4-phenyl-phenoxy)-1,3,5-triazine derived from 4-phenylphenol cyanate ester and phenyl glycidyl ether were analyzed. In addition to an isocyanurate compound and an oxazolidone compound which were well known as reaction products of cyanate esters and epoxy resins, compounds with hybrid ring structure of cyanurate/isocyanurate were determined. Gibbs free energies of the compound having hybrid ring structure of cyanurate/isocyanurate with two isocyanurate moiety were found to be lower than that of the compound with cyanurate ring structure through calculations. Calculation data supported the existence of hybrid ring structure of cy-anurate/isocyanurate. It was revealed that isomerization from cyanurate to isocyanurate occurs via hybrid ring structure of cyanurate/isocyanurate in the reaction of aryl cyanurate and epoxy.展开更多
为研究单层弹性环式挤压油膜阻尼器(elastic ring squeeze film damper,ERSFD)的油膜压力特性,建立薄环-紊动射流小孔模型。通过平面薄环弯曲理论和普朗特边界层理论分别计算弹性环变形和阻尼孔出口净流速;分析弹性环柔度、阻尼孔直径...为研究单层弹性环式挤压油膜阻尼器(elastic ring squeeze film damper,ERSFD)的油膜压力特性,建立薄环-紊动射流小孔模型。通过平面薄环弯曲理论和普朗特边界层理论分别计算弹性环变形和阻尼孔出口净流速;分析弹性环柔度、阻尼孔直径及进动角变化对油膜压力特性的影响,并开展外腔油膜压力多转速测量试验。结果表明:外腔油膜压力随弹性环柔度的减小而下降,但随阻尼孔直径的减小而增加;对于内腔油膜压力,阻尼孔直径的影响与外腔相似,但减小弹性环柔度导致压力增加。试验表明,外腔油膜压力在不同转速下均同步方位角周期变化,而高转速时,压力幅值略有增加。展开更多
为实现一套系统满足全年环境调控需求,试验选取两栋安装有“有缓冲间湿帘-风机系统”的兔舍,冬季其中一栋舍一台风机安装变频器,另一栋舍全为定速风机。结果表明,冬季定速风机常速间歇通风的兔舍导向板进风口的风速为1.8 m/s,进入舍内...为实现一套系统满足全年环境调控需求,试验选取两栋安装有“有缓冲间湿帘-风机系统”的兔舍,冬季其中一栋舍一台风机安装变频器,另一栋舍全为定速风机。结果表明,冬季定速风机常速间歇通风的兔舍导向板进风口的风速为1.8 m/s,进入舍内风速降至0.1m/s,每日首次开启风机10 min CO_2浓度降低67.2%,间歇通风每次温度平均降低0.8℃;使用变频风机低速持续通风的兔舍,导向板进风口风速0.2m/s,进入舍内风速降到了0.05m/s,开启风机CO_2浓度降低59.5%,温度降低0.3℃;两舍缓冲间预热能够分别提升气流温度2℃、1.4℃。夏季在舍外温度32.4~38.2℃时,舍内温度能维持在26℃左右,温度降幅为9.0℃,舍内温湿指数(THI)为25.9;外墙湿帘的降温效率为87.2%,内墙湿帘的降温效率为0。夏季缓冲间和进风口气流导向能够显著降低入舍风速(外墙湿帘过帘风速0.8m/s,导向板进风口风速1.9m/s,进入舍内风速0.3m/s),且舍内气流分布均匀。综合环境指标说明,有缓冲间的湿帘-风机纵向通风系统克服了冬夏季进风端风速大、温度低的弊端,但舍内隔墙上的湿帘无降温潜力,建议去掉第一缓冲间及内墙湿帘。展开更多
基金Innovation Funded Project of Fujian Province,China(No.2015C0030)Natural Science Foundation of Guangdong Province,China(No.S2013020013855)
文摘A lumped parameter-rigid elastic coupled dynamic model of two-stage planetary gears for a hybrid car is established through the inter-stage coupled method,in which the supports of the ring gear of planet set Ⅱ are represented as an elastic foundation with radial and tangential uniform distributed stiffness,and the ring gear of planet set Ⅱ is modeled as an elastic continuum body. The natural frequencies based on the eigenvalue problem of dynamic model of planetary transmission are solved and the associated vibration modes are discussed. The rules are revealed which are the influences of the ring gear elastic supports stiffness and rim thickness on natural frequencies of planetary transmission. The theoretical analysis indicates that the vibration modes of planetary transmission with thin-walled ring gear on elastic supports are classified into seven types: Ⅰ/Ⅱ stage coupled rotational mode,Ⅰ stage translational mode,Ⅰ stage planet mode,Ⅱ stage translational mode,Ⅱ stage degenerate planet mode,Ⅱ stage distinct planet mode and purely ring gear mode. For each vibration mode, its properties are summarized. The numerical solutions show that the elastic supports stiffness and rim thickness of the ring gear of planet set Ⅱ have different influences on natural frequencies.
基金supported by the National Natural Science Foundation of China(10872076)
文摘In a microfluidic system, flow slip velocity on a solid wall can be the same order of magnitude as the average velocity in a microchannel. The flow-electricity interaction in a complex microfluidic system subjected to joint action of wall slip and electro-viscous effect is an important topic. This paper presents an analytic solution of pressuredriven liquid flow velocity and flow-induced electric field in a two-dimensional microchannel made of different materials with wall slip and electro-viscous effects. The Poisson- Boltzmann equation and the Navier-Stokes equation are solved for the analytic solutions. The analytic solutions agree well with the numerical solutions. It was found that the wall slip amplifies the fow-induced electric field and enhances the electro-viscous effect on flow. Thus the electro-viscous effect can be significant in a relatively wide microchannel with relatively large kh, the ratio of channel width to thickness of electric double layer, in comparison with the channel without wall slip.
基金supported by the National Natural Science Foundation of China (11272357 and 11102140)Doctoral Fund of Ministry of Education of China (200804251520 and 20110141120024)Natural Science Foundation of Shandong Province (ZR2009AQ006)
文摘In this study, we developed a general method to analytically tackle a kind of movable boundary problem from the viewpoint of energy variation. Having grouped the adhesion of a micro-beam, droplet and carbon nanotube (CNT) ring on a substrate into one framework, we used the developed line of reasoning to investigate the adhesion behaviors of these systems. Based upon the derived governing equations and transversality conditions, explicit solutions involving the critical parameters and morphologies for the three systems are successfully obtained, and then the parameter analogies and common characteristics of them are thor- oughly investigated. The presented method has been verified via the concept of energy release rate in fracture mechanics. Our analyses provide a new approach for exploring the mechanism of different systems with similarities as well as for understanding the unity of nature. The analysis results may be beneficial for the design of nano-structured materi- als, and hold potential for enhancing their mechanical, chemical, optical and electronic properties.
基金Supported by National Natural Science Foundation of China(Grant Nos.51675361,51575371)Key Program of National Natural Science Foundation of China(Grant No.51135007)Key Research Project of Shanxi Province(Grant No.03012015004)
文摘Research on compact manufacturing technology for shape and performance controllability of metallic components can reanze the simplification and high-reliability of manufacturing process on the premise of satisfying the requirement of macro/micro-structure. It is not only the key paths in improving performance, saving material and energy, and green manufacturing of components used in major equipments, but also the challenging subjects in frontiers of advanced plastic forming. To provide a novel horizon for the manufacturing in the critical components is significant. Focused on the high-performance large-scale components such as bearing rings, flanges, railway wheels, thick-walled pipes, etc, the conventional processes and their developing situations are summarized. The existing problems including multi-pass heating, wasting material and energy, high cost and high-emission are discussed, and the present study unable to meet the manufacturing in high-quality components is also pointed out. Thus, the new techniques related to casting-rolling compound precise forming of rings, compact manufacturing for duplex-metal composite rings, compact manufacturing for railway wheels, and casting-extruding continuous forming of thick-walled pipes are introduced in detail, respectively. The corresponding research contents, such as casting ring blank, hot ring rolling, near solid-state pressure forming, hot extruding, are elaborated. Some findings in through-thickness microstructure evolution and mechanical properties are also presented. The components produced by the new techniques are mainly characterized by fine and homogeneous grains. Moreover, the possible directions for fin'ther development of those techniques are suggested. Finally, the key scientific problems are first proposed. All of these results and conclusions have reference value and guiding significance for the integrated control of shape and performance in advanced compact manufacturing.
文摘To investigate the chemical structure of cell wall mannan obtained from pathogenic yeast, Candida tropicalis NBRC 1400 (former antigenic standard strain, IFO 1400). As a result of two-dimensional NMR analysis, it was shown that the mannan of this strain is composed of α-1,6-, α-1,3-, α-1,2- and β-1,2-linked mannose residues. In this research, the mannan was subjected to three degradation procedures, acid-treatment, α-mannosidase, and acetolysis under two conditions in order to determine the chemical structure of the antigenic oligomannosyl side chains in this molecule. The 1H-nuclear magnetic resonance spectra of resultant oligosaccharides, pentaose and hexaose, demonstrated the existence of the oligomannosyl side chains corresponding to Manα1-3Manα1-2Manα1-2Manα1-2Man and Manα1-3Manα1-2Manα1-2Manα1-2Manα1-2Man, respectively, which have previously also been found in Candida albicans serotype A strain mannans. These findings indicate that C. tropicalis and C. albicans serotype A have no significant difference in the chemical structure of these cell wall mannans. Therefore, it can be interpreted that it is extremely difficult to distinguish both species by targeting the antigenic group in these mannans.
基金finantially supported by the Science Foundation for International Cooperation of Sichuan Province (2014HH0016)the Fundamental Research Funds for the Central Universities (SWJTU2014: A0920502051113-10000)National Magnetic Confinement Fusion Science Program (2011GB112001)
文摘The preparation, characterization, and test of the first wall materials designed to be used in the fusion reactor have remained challenging problems in the material science. This work uses the firstprinciples method as implemented in the CASTEP package to study the influ ences of the doped titanium carbide on the structural sta bility of the WTiC material. The calculated total energy and enthalpy have been used as criteria to judge the structural models built with consideration of symmetry. Our simulation indicates that the doped TiC tends to form its own domain up to the investigated nanoscale, which implies a possible phase separation. This result reveals the intrinsic reason for the composite nature of the WTiC material and provides an explanation for the experimen tally observed phase separation at the nanoscale. Our approach also sheds a light on explaining the enhancing effects of doped components on the durability, reliability, corrosion resistance, etc., in many special steels.
文摘BACKGROUND Secondary rectal linitis plastica(RLP)from prostatic adenocarcinoma is a rare and poorly understood form of metastatic spread,characterized by a desmoplastic response and concentric rectal wall infiltration with mucosal preservation.This complicates endoscopic diagnosis and can mimic gastrointestinal malignancies.This case series underscores the critical role of magnetic resonance imaging(MRI)in identifying the distinct imaging features of RLP and highlights the importance of considering this condition in the differential diagnosis of patients with a history of prostate cancer.CASE SUMMARY Three patients with secondary RLP due to prostatic adenocarcinoma presented with varied clinical features.The first patient,a 76-year-old man with advanced prostate cancer,had rectal pain and incontinence.MRI showed diffuse prostatic invasion and significant rectal wall thickening with a characteristic"target sign"pattern.The second,a 57-year-old asymptomatic man with elevated prostatespecific antigen levels and a history of prostate cancer exhibited rectoprostatic angle involvement and rectal wall thickening on MRI,with positron emission tomography/computed tomography PSMA confirming the prostatic origin of the metastatic spread.The third patient,an 80-year-old post-radical prostatectomy,presented with refractory constipation.MRI revealed a neoplastic mass infiltrating the rectal wall.In all cases,MRI consistently showed stratified thickening,concentric signal changes,restricted diffusion,and contrast enhancement,which were essential for diagnosing secondary RLP.Biopsies confirmed the prostatic origin of the neoplastic involvement in the rectum.CONCLUSION Recognizing MRI findings of secondary RLP is essential for accurate diagnosis and management in prostate cancer patients.
文摘Reaction products of 2,4,6-tris(4-phenyl-phenoxy)-1,3,5-triazine derived from 4-phenylphenol cyanate ester and phenyl glycidyl ether were analyzed. In addition to an isocyanurate compound and an oxazolidone compound which were well known as reaction products of cyanate esters and epoxy resins, compounds with hybrid ring structure of cyanurate/isocyanurate were determined. Gibbs free energies of the compound having hybrid ring structure of cyanurate/isocyanurate with two isocyanurate moiety were found to be lower than that of the compound with cyanurate ring structure through calculations. Calculation data supported the existence of hybrid ring structure of cy-anurate/isocyanurate. It was revealed that isomerization from cyanurate to isocyanurate occurs via hybrid ring structure of cyanurate/isocyanurate in the reaction of aryl cyanurate and epoxy.
文摘为研究单层弹性环式挤压油膜阻尼器(elastic ring squeeze film damper,ERSFD)的油膜压力特性,建立薄环-紊动射流小孔模型。通过平面薄环弯曲理论和普朗特边界层理论分别计算弹性环变形和阻尼孔出口净流速;分析弹性环柔度、阻尼孔直径及进动角变化对油膜压力特性的影响,并开展外腔油膜压力多转速测量试验。结果表明:外腔油膜压力随弹性环柔度的减小而下降,但随阻尼孔直径的减小而增加;对于内腔油膜压力,阻尼孔直径的影响与外腔相似,但减小弹性环柔度导致压力增加。试验表明,外腔油膜压力在不同转速下均同步方位角周期变化,而高转速时,压力幅值略有增加。
文摘为实现一套系统满足全年环境调控需求,试验选取两栋安装有“有缓冲间湿帘-风机系统”的兔舍,冬季其中一栋舍一台风机安装变频器,另一栋舍全为定速风机。结果表明,冬季定速风机常速间歇通风的兔舍导向板进风口的风速为1.8 m/s,进入舍内风速降至0.1m/s,每日首次开启风机10 min CO_2浓度降低67.2%,间歇通风每次温度平均降低0.8℃;使用变频风机低速持续通风的兔舍,导向板进风口风速0.2m/s,进入舍内风速降到了0.05m/s,开启风机CO_2浓度降低59.5%,温度降低0.3℃;两舍缓冲间预热能够分别提升气流温度2℃、1.4℃。夏季在舍外温度32.4~38.2℃时,舍内温度能维持在26℃左右,温度降幅为9.0℃,舍内温湿指数(THI)为25.9;外墙湿帘的降温效率为87.2%,内墙湿帘的降温效率为0。夏季缓冲间和进风口气流导向能够显著降低入舍风速(外墙湿帘过帘风速0.8m/s,导向板进风口风速1.9m/s,进入舍内风速0.3m/s),且舍内气流分布均匀。综合环境指标说明,有缓冲间的湿帘-风机纵向通风系统克服了冬夏季进风端风速大、温度低的弊端,但舍内隔墙上的湿帘无降温潜力,建议去掉第一缓冲间及内墙湿帘。