In this paper, we propose an analytical avalanche multiplication model for the next generation of SiGe silicon- on-insulator (SOI) heterojunction bipolar transistors (HBTs) and consider their vertical and lateral ...In this paper, we propose an analytical avalanche multiplication model for the next generation of SiGe silicon- on-insulator (SOI) heterojunction bipolar transistors (HBTs) and consider their vertical and lateral impact ionizations for the first time. Supported by experimental data, the analytical model predicts that the avalanche multiplication governed by impact ionization shows kinks and the impact ionization effect is small compared with that of the bulk HBT, resulting in a larger base-collector breakdown voltage. The model presented in the paper is significant and has useful applications in the design and simulation of the next generation of SiCe SOI BiCMOS technology.展开更多
Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃,...Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃, The electrical, structural, and optical properties of the films were investigated. The deposited films were then applied as i-layers for p-i-n single junction solar cells. The current-voltage (I - V) characteristics of the cells were measured before and after the light soaking. The results suggest that the films deposited near the transition region have an optimum properties for application in solar cells. The cell with an i-layer prepared near the transition region shows the best stable performance.展开更多
Poly-crystalline silicon thin film has big potential of reducing the cost of solar cells. In this paper the preparation of thin film is introduced, and then the morphology of poly-crystalline thin film, is discussed. ...Poly-crystalline silicon thin film has big potential of reducing the cost of solar cells. In this paper the preparation of thin film is introduced, and then the morphology of poly-crystalline thin film, is discussed. On the film we developed poly-crystalline silicon thin film solar cells with efficiency up to 6.05% without anti-reflection coating.展开更多
We established a model for investigating polycrystalline silicon(poly-Si) thin film transistors(TFTs).The effect of grain boundaries(GBs) on the transfer characteristics of TFT was analyzed by considering the nu...We established a model for investigating polycrystalline silicon(poly-Si) thin film transistors(TFTs).The effect of grain boundaries(GBs) on the transfer characteristics of TFT was analyzed by considering the number and the width of grain boundaries in the channel region,and the dominant transport mechanism of carrier across grain boundaries was subsequently determined.It is shown that the thermionic emission(TE) is dominant in the subthreshold operating region of TFT regardless of the number and the width of grain boundary.To a poly-Si TFT model with a 1 nm-width grain boundary,in the linear region,thermionic emission is similar to that of tunneling(TU),however,with increasing grain boundary width and number,tunneling becomes dominant.展开更多
This paper studies the effects of silane back diffusion in the initial plasma ignition stage on the properties of microcrystalline silicon (μc-Si:H) films by Raman spectroscopy and spectroscopic ellipsometry, thro...This paper studies the effects of silane back diffusion in the initial plasma ignition stage on the properties of microcrystalline silicon (μc-Si:H) films by Raman spectroscopy and spectroscopic ellipsometry, through delaying the injection of SiH4 gas to the reactor before plasma ignition. Compared with standard discharge condition, delayed SiH4 gas condition could prevent the back diffusion of Sill4 from the reactor to the deposition region effectively, which induced the formation of a thick amorphous incubation layer in the interface between bulk film and glass substrate. Applying this method, it obtains the improvement of spectral response in the middle and long wavelength region by combining this method with solar cell fabrication. Finally, results are explained by modifying zero-order analytical model, and a good agreement is found between the model and experiments concerning the optimum delayed injection time.展开更多
Arrays of silicon micro\|tips were made by etching the p\|type (1 0 0) silicon wafers which had SiO 2 masks with alkaline solution. The density of the micro\|tips is 2×10 4 cm -2 . The Scanning Elect...Arrays of silicon micro\|tips were made by etching the p\|type (1 0 0) silicon wafers which had SiO 2 masks with alkaline solution. The density of the micro\|tips is 2×10 4 cm -2 . The Scanning Electron Microscope (SEM) photos showed that the tips in these arrays are uniform and orderly. The CN x thin film, with the thickness of 1.27μm was deposited on the silicon micro\|tip arrays by using the middle frequency magnetron sputtering technology. The SEM photos showed that the films on the tips are smoothly without particles. Keeping the sharpness of the tips will benefit the properties of field emission. The X\|ray photoelectron spectrum (XPS) showed that carbon, nitrogen and oxygen are the three major elements in the surfaces of the films. The percents of them are C: 69.5 %, N: 12.6 % and O: 17.9 %. The silicon arrays coated with CN x thin films had shown a good field emission characterization. The emission current intensity reached 3.2 mA/cm 2 at 32.8 V/μm, so it can be put into use. The result showed that the silicon arrays coated with CN x thin films are likely to be good field emission cathode. The preparation and the characterization of the samples were discussed in detail.展开更多
A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15 nm)/a-Si:H(10 nm)/epitaxial c-Si(47 p.m)/epitaxial c-Si(3 um) structure is fabricated by using the layer transfer technique, and the emitter l...A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15 nm)/a-Si:H(10 nm)/epitaxial c-Si(47 p.m)/epitaxial c-Si(3 um) structure is fabricated by using the layer transfer technique, and the emitter layer is deposited by hot wire chemical vapour deposition. The effect of the doping concentration of the emitter layer Sd (Sd=PH3/(PH3 +SiH4+H2)) on the performance of the solar cell is studied by means of current density-voltage and external quantum efficiency. The results show that the conversion efficiency of the solar cell first increases to a maximum value and then decreases with Sd increasing from 0.1% to 0.4%. The best performance of the solar cell is obtained at Sd = 0.2% with an open circuit voltage of 534 mV, a short circuit current density of 23.35 mA/cm2, a fill factor of 63.3%, and a conversion efficiency of 7.9%.展开更多
The preparation, current status and trends are investigated for silicon thin film solar cells. The advantages and disadvantages of amorphous silicon thin film, polycrystalline silicon thin film and mono-crystalline si...The preparation, current status and trends are investigated for silicon thin film solar cells. The advantages and disadvantages of amorphous silicon thin film, polycrystalline silicon thin film and mono-crystalline silicon thin film solar cells are compared. The future development trends are pointed out. It is found that polycrystalline silicon thin film solar cells will be more promising for application with great potential.展开更多
The total ionizing dose radiation effects in the polycrystalline silicon thin film transistors are studied. Transfer characteristics, high-frequency capacitance-voltage curves and low-frequency noises (LFN) are measur...The total ionizing dose radiation effects in the polycrystalline silicon thin film transistors are studied. Transfer characteristics, high-frequency capacitance-voltage curves and low-frequency noises (LFN) are measured before and after radiation. The experimental results show that threshold voltage and hole-field-effect mobility decrease, while sub-threshold swing and low-frequency noise increase with the increase of the total dose. The contributions of radiation induced interface states and oxide trapped charges to the shift of threshold voltage are also estimated. Furthermore, spatial distributions of oxide trapped charges before and after radiation are extracted based on the LFN measurements.展开更多
Si-doped zinc oxide(SZO) thin films are deposited by using a co-sputtering method,and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures.The effects of silicon content o...Si-doped zinc oxide(SZO) thin films are deposited by using a co-sputtering method,and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures.The effects of silicon content on the optical transmittance of the SZO thin film and electrical properties of the SZO TFT are investigated.Moreover,the electrical performances and bias-stress stabilities of the single- and dual-active-layer TFTs are investigated and compared to reveal the effects of the Si doping and dual-active-layer structure.The average transmittances of all the SZO films are about 90% in the visible light region of 400 nm-800 nm,and the optical band gap of the SZO film gradually increases with increasing Si content.The Si-doping can effectively suppress the grain growth of ZnO,revealed by atomic force microscope analysis.Compared with that of the undoped ZnO TFT,the off-state current of the SZO TFT is reduced by more than two orders of magnitude and it is 1.5 × 10^-12 A,and thus the on/off current ratio is increased by more than two orders of magnitude.In summary,the SZO/ZnO TFT with dual-active-layer structure exhibits a high on/off current ratio of 4.0 × 10^6 and superior stability under gate-bias and drain-bias stress.展开更多
The Plasma-Enhanced Chemical Vapor Deposition (PECVD) method is widely used compared to other methods to deposit hydrogenated silicon Si:H. In this work, a systematic variation of deposition parameters was done to stu...The Plasma-Enhanced Chemical Vapor Deposition (PECVD) method is widely used compared to other methods to deposit hydrogenated silicon Si:H. In this work, a systematic variation of deposition parameters was done to study the sensitivities and the effects of these parameters on the intrinsic layer material properties. Samples were deposited with 13.56 MHZ PECVD through decomposition of silane diluted with argon. Undoped samples depositions were made in this experiment in order to obtain the transition from the amorphous to nanocrystalline phase materials. The substrate temperature was fixed at 200oC. The influence of depositions parameters on the optical proprieties of the thin films was studied by UV-Vis-NIR spectroscopy. The structural evolution was also studied by Raman spectroscopy and X-ray diffraction (XRD). The structural evolution studies show that beyond 200 W radio frequency power value, we observed an amorphous-nanocrystalline transition, with an increase in crystalline fraction by increasing RF power and working pressure. The deposition rates are found in the range 6 - 10 /s. A correlation between structural and optical properties has been found and discussed.展开更多
The structural un-uniformity of microcrystalline silicon, thin film, amorphous incubation layerc-Si:H films prepared using very high frequency plasma-enhanced chemical vapour deposition method has been investigated ...The structural un-uniformity of microcrystalline silicon, thin film, amorphous incubation layerc-Si:H films prepared using very high frequency plasma-enhanced chemical vapour deposition method has been investigated by Raman spectroscopy, spectroscopic ellipsometer and atomic force mi- croscopy. It was found that the formation of amorphous incubation layer was caused by the back diffusion of SiH4 and the amorphous induction of glass surface during the initial ignition process, and growth of the incubation layer can be suppressed and uniform μc-Si:H phase is generated by the application of delayed initial SiH4 density and silane profiling methods.展开更多
Polycrystalline zinc oxide (ZnO) thin films have been deposited at 450°C onto glass and silicon substrates by pulsed laser deposition technique (PLD). The used source was a KrF excimer laser (248 nm, 25 ns, 5 Hz,...Polycrystalline zinc oxide (ZnO) thin films have been deposited at 450°C onto glass and silicon substrates by pulsed laser deposition technique (PLD). The used source was a KrF excimer laser (248 nm, 25 ns, 5 Hz, 2 J/cm2). The effects of glass and silicon substrates on structural and optical properties of ZnO films have been investigated. X-ray diffraction patterns showed that ZnO films are polycrystalline with a hexagonal wurtzite—type structure with a strong (103) orientation and have a good crystallinity on monocrystalline Si(100) substrate. The thickness and compositional depth profile were studied by Rutherford Backscattering spectrometry (RBS). The average transmittance of ZnO films deposited on glass substrate in the visible range is 70%.展开更多
Amorphous silicon ( a-Si ) thin films were deposited on glass substrate by PECVD, and polycrystalline silicon ( poly- Si ) thin films were prepared by aluminum- induced crystallization ( AlC ). The effects of an...Amorphous silicon ( a-Si ) thin films were deposited on glass substrate by PECVD, and polycrystalline silicon ( poly- Si ) thin films were prepared by aluminum- induced crystallization ( AlC ). The effects of annealing temperature on the microstructure and morphology were investigated. The AlC poly-Si thin films were characterized by XRD, Raman and SEM. It is found that a-Si thin film has a amorphous structure after annealing at 400℃ for 20 min, a-Si films begin to crystallize after annealing at 450 ℃ for 20 min, and the crystallinity of a-Si thin films is enhanced obviously with the increment of annealing termperature.展开更多
Aluminum-induced crystallized silicon films were prepared on glass substrates by magnetron sputtering. Aluminum was added in the silicon films intermittently by the regular pulse sputtering of an aluminum target. The ...Aluminum-induced crystallized silicon films were prepared on glass substrates by magnetron sputtering. Aluminum was added in the silicon films intermittently by the regular pulse sputtering of an aluminum target. The amount of aluminum in the silicon films can be controlled by regulating the aluminum sputtering power and the sputtering time of the undoped silicon layer; thus, the Seebeck coefficient and electrical resistivity of the polyerystaUine silicon films can be adjusted. It is found that, when the sputtering power ratio of aluminum to silicon is 16%, both the Seebeck coefficient and the electrical resistivity decrease with the increasing amount of aluminum as expected; the Seebeck coefficient and the electrical resistivity at room temperature are 0.185-0.285 mV/K and 0.30-2.4 Ω.cm, respectively. By reducing the sputtering power ratio to 7%, however, the Seebeck coefficient does not change much, though the electrical resistivity still decreases with the amount of aluminum increasing; the Seebeck coefficient and electrical resistivity at room temperature are 0.219-0.263 mV/K and 0.26-0.80 Ω·cm, respectively.展开更多
We have studied the interracial reactions between amorphous LaAlO3 thin films and Si substrates, using high- resolution transmission electron microscopy and x-ray photoelectron spectroscopy. It has been shown that the...We have studied the interracial reactions between amorphous LaAlO3 thin films and Si substrates, using high- resolution transmission electron microscopy and x-ray photoelectron spectroscopy. It has been shown that the interracial layer between LaAlO3 film and Si substrate chemical states show that the ratio of La 4d3/2 to Al 2p is SiLaxAlyOz. The depth distributions of La, Si and Al of the interfacial layer remains unchanged with the depth compared to that of the LaAlO3 film. Moreover, the Si content, in the interracial layer gradually decreases with increasing thickness of the interracial layer. These results strongly suggest that the Al element is not deficient in the interracial layer, as previously believed, and the formation of a SiLaxAlyOz interracial layer is mainly due to the diffusion of Si from the substrate during the LaAlO3 film deposition. With the understanding of the interracial layer formation, ones can control the interface characteristics to ensure the desired performances of devices using high-k oxides as gate dielectrics.展开更多
The properties of BaTiO3 (BTO) thin films deposited on different substrates by RF magnetron sputtering were investigated. Two representative substrates were selected and different heterostructures were studied. 1) SrT...The properties of BaTiO3 (BTO) thin films deposited on different substrates by RF magnetron sputtering were investigated. Two representative substrates were selected and different heterostructures were studied. 1) SrTiO3 (STO) single crystals as a bulk oxide reference material, and 2) silicon as a semiconductor. SrRuO3 (SRO) and Pt bottom electrodes were deposited on the silicon substrate. The BTO structural characterizations show that all the films have (001) crystallographic orientation. We have compared the electrical properties of the different samples: the same dielectric constant and polarization values were obtained independently of the nature of the substrate.展开更多
The instability of p-channel low-temperature polycrystalline silicon thin film transistors(poly-Si TFTs)is investigated under negative gate bias stress(NBS)in this work.Firstly,a series of negative bias stress experim...The instability of p-channel low-temperature polycrystalline silicon thin film transistors(poly-Si TFTs)is investigated under negative gate bias stress(NBS)in this work.Firstly,a series of negative bias stress experiments is performed,the significant degradation behaviors in current-voltage characteristics are observed.As the stress voltage decreases from-25 V to-37 V,the threshold voltage and the sub-threshold swing each show a continuous shift,which is induced by gate oxide trapped charges or interface state.Furthermore,low frequency noise(LFN)values in poly-Si TFTs are measured before and after negative bias stress.The flat-band voltage spectral density is extracted,and the trap concentration located near the Si/SiO2 interface is also calculated.Finally,the degradation mechanism is discussed based on the current-voltage and LFN results in poly-Si TFTs under NBS,finding out that Si-OH bonds may be broken and form Si*and negative charge OH-under negative bias stress,which is demonstrated by the proposed negative charge generation model.展开更多
The laser equipment is one of the key equipment in the production line of the solar energy. In this article, the author de-scribes the application of the laser equipment in the production line of the amorphous silicon...The laser equipment is one of the key equipment in the production line of the solar energy. In this article, the author de-scribes the application of the laser equipment in the production line of the amorphous silicon film solar cells, and points out that the stable and exactitude is the key direction of the future development of the laser scribing equipment.展开更多
Organic devices have many advantages such as low material consumption and low energy requirements, but they have serious issues regarding long term stability. Hence we need to develop a barrier film which solves this ...Organic devices have many advantages such as low material consumption and low energy requirements, but they have serious issues regarding long term stability. Hence we need to develop a barrier film which solves this problem. Initially, the organic devices were fabricated on glass and were encapsulated using glass and epoxy (as sealant). Gradually there was a need to shift on to flexible substrates which required encapsulation to be flexible as well. Therefore, the motivation of the work is to develop thin film encapsulation that can be made flexible. The low temperature PECVD grown films of SiOx and SiNxwere used as the barrier film. Alternate inorganic layers (2-dyads) provided barrier of ~10-2 g/m2 day and increasing the number of dyads to five improved the water vapor transmission rate (WVTR) only by one order of magnitude. However, introducing organic layers in this structure resulted in WVTR value of order 10-5 g/m2 day. The organic layers were deposited by spray technique.展开更多
基金supported by the Science Foundation of National Ministries and Commissions (Grant Nos. 51308040203 and 6139801)the Fundamental Research Funds for the Central Universities of China (Grant Nos. 72105499 and 72104089)the Natural Science Basic Research Program in Shaanxi Province of China (Grant No. 2010JQ8008)
文摘In this paper, we propose an analytical avalanche multiplication model for the next generation of SiGe silicon- on-insulator (SOI) heterojunction bipolar transistors (HBTs) and consider their vertical and lateral impact ionizations for the first time. Supported by experimental data, the analytical model predicts that the avalanche multiplication governed by impact ionization shows kinks and the impact ionization effect is small compared with that of the bulk HBT, resulting in a larger base-collector breakdown voltage. The model presented in the paper is significant and has useful applications in the design and simulation of the next generation of SiCe SOI BiCMOS technology.
文摘Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃, The electrical, structural, and optical properties of the films were investigated. The deposited films were then applied as i-layers for p-i-n single junction solar cells. The current-voltage (I - V) characteristics of the cells were measured before and after the light soaking. The results suggest that the films deposited near the transition region have an optimum properties for application in solar cells. The cell with an i-layer prepared near the transition region shows the best stable performance.
基金This work was supported by the Chinese Academy of Sciences within the Hundred Talent Project(No.99-019-422288)National High Technical Research and Development Programme of China(No.2001AA513060).
文摘Poly-crystalline silicon thin film has big potential of reducing the cost of solar cells. In this paper the preparation of thin film is introduced, and then the morphology of poly-crystalline thin film, is discussed. On the film we developed poly-crystalline silicon thin film solar cells with efficiency up to 6.05% without anti-reflection coating.
基金Funded by the National Natural Science Foundation of China(Nos.51202063 and 51177003)Hubei Provincial Department of Education(No.Q20111009)
文摘We established a model for investigating polycrystalline silicon(poly-Si) thin film transistors(TFTs).The effect of grain boundaries(GBs) on the transfer characteristics of TFT was analyzed by considering the number and the width of grain boundaries in the channel region,and the dominant transport mechanism of carrier across grain boundaries was subsequently determined.It is shown that the thermionic emission(TE) is dominant in the subthreshold operating region of TFT regardless of the number and the width of grain boundary.To a poly-Si TFT model with a 1 nm-width grain boundary,in the linear region,thermionic emission is similar to that of tunneling(TU),however,with increasing grain boundary width and number,tunneling becomes dominant.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No. 2006CB202601)
文摘This paper studies the effects of silane back diffusion in the initial plasma ignition stage on the properties of microcrystalline silicon (μc-Si:H) films by Raman spectroscopy and spectroscopic ellipsometry, through delaying the injection of SiH4 gas to the reactor before plasma ignition. Compared with standard discharge condition, delayed SiH4 gas condition could prevent the back diffusion of Sill4 from the reactor to the deposition region effectively, which induced the formation of a thick amorphous incubation layer in the interface between bulk film and glass substrate. Applying this method, it obtains the improvement of spectral response in the middle and long wavelength region by combining this method with solar cell fabrication. Finally, results are explained by modifying zero-order analytical model, and a good agreement is found between the model and experiments concerning the optimum delayed injection time.
文摘Arrays of silicon micro\|tips were made by etching the p\|type (1 0 0) silicon wafers which had SiO 2 masks with alkaline solution. The density of the micro\|tips is 2×10 4 cm -2 . The Scanning Electron Microscope (SEM) photos showed that the tips in these arrays are uniform and orderly. The CN x thin film, with the thickness of 1.27μm was deposited on the silicon micro\|tip arrays by using the middle frequency magnetron sputtering technology. The SEM photos showed that the films on the tips are smoothly without particles. Keeping the sharpness of the tips will benefit the properties of field emission. The X\|ray photoelectron spectrum (XPS) showed that carbon, nitrogen and oxygen are the three major elements in the surfaces of the films. The percents of them are C: 69.5 %, N: 12.6 % and O: 17.9 %. The silicon arrays coated with CN x thin films had shown a good field emission characterization. The emission current intensity reached 3.2 mA/cm 2 at 32.8 V/μm, so it can be put into use. The result showed that the silicon arrays coated with CN x thin films are likely to be good field emission cathode. The preparation and the characterization of the samples were discussed in detail.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2006AA03Z219)the Jiangsu Innovation Program for Graduate Education, China (Grant No. CXZZ11 0206)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China
文摘A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15 nm)/a-Si:H(10 nm)/epitaxial c-Si(47 p.m)/epitaxial c-Si(3 um) structure is fabricated by using the layer transfer technique, and the emitter layer is deposited by hot wire chemical vapour deposition. The effect of the doping concentration of the emitter layer Sd (Sd=PH3/(PH3 +SiH4+H2)) on the performance of the solar cell is studied by means of current density-voltage and external quantum efficiency. The results show that the conversion efficiency of the solar cell first increases to a maximum value and then decreases with Sd increasing from 0.1% to 0.4%. The best performance of the solar cell is obtained at Sd = 0.2% with an open circuit voltage of 534 mV, a short circuit current density of 23.35 mA/cm2, a fill factor of 63.3%, and a conversion efficiency of 7.9%.
文摘The preparation, current status and trends are investigated for silicon thin film solar cells. The advantages and disadvantages of amorphous silicon thin film, polycrystalline silicon thin film and mono-crystalline silicon thin film solar cells are compared. The future development trends are pointed out. It is found that polycrystalline silicon thin film solar cells will be more promising for application with great potential.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61574048 and 61204112the Science and Technology Research Project of Guangdong Province under Grant Nos 2015B090912002 and 2014A030313656the Pearl River S&T Nova Program of Guangzhou
文摘The total ionizing dose radiation effects in the polycrystalline silicon thin film transistors are studied. Transfer characteristics, high-frequency capacitance-voltage curves and low-frequency noises (LFN) are measured before and after radiation. The experimental results show that threshold voltage and hole-field-effect mobility decrease, while sub-threshold swing and low-frequency noise increase with the increase of the total dose. The contributions of radiation induced interface states and oxide trapped charges to the shift of threshold voltage are also estimated. Furthermore, spatial distributions of oxide trapped charges before and after radiation are extracted based on the LFN measurements.
基金supported by the National Natural Science Foundation of China(Grant Nos.61076113 and 61274085)the Natural Science Foundation of Guangdong Province(Grant No.2016A030313474)the University Development Fund(Nanotechnology Research Institute,Grant No.00600009)of the University of Hong Kong,China
文摘Si-doped zinc oxide(SZO) thin films are deposited by using a co-sputtering method,and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures.The effects of silicon content on the optical transmittance of the SZO thin film and electrical properties of the SZO TFT are investigated.Moreover,the electrical performances and bias-stress stabilities of the single- and dual-active-layer TFTs are investigated and compared to reveal the effects of the Si doping and dual-active-layer structure.The average transmittances of all the SZO films are about 90% in the visible light region of 400 nm-800 nm,and the optical band gap of the SZO film gradually increases with increasing Si content.The Si-doping can effectively suppress the grain growth of ZnO,revealed by atomic force microscope analysis.Compared with that of the undoped ZnO TFT,the off-state current of the SZO TFT is reduced by more than two orders of magnitude and it is 1.5 × 10^-12 A,and thus the on/off current ratio is increased by more than two orders of magnitude.In summary,the SZO/ZnO TFT with dual-active-layer structure exhibits a high on/off current ratio of 4.0 × 10^6 and superior stability under gate-bias and drain-bias stress.
文摘The Plasma-Enhanced Chemical Vapor Deposition (PECVD) method is widely used compared to other methods to deposit hydrogenated silicon Si:H. In this work, a systematic variation of deposition parameters was done to study the sensitivities and the effects of these parameters on the intrinsic layer material properties. Samples were deposited with 13.56 MHZ PECVD through decomposition of silane diluted with argon. Undoped samples depositions were made in this experiment in order to obtain the transition from the amorphous to nanocrystalline phase materials. The substrate temperature was fixed at 200oC. The influence of depositions parameters on the optical proprieties of the thin films was studied by UV-Vis-NIR spectroscopy. The structural evolution was also studied by Raman spectroscopy and X-ray diffraction (XRD). The structural evolution studies show that beyond 200 W radio frequency power value, we observed an amorphous-nanocrystalline transition, with an increase in crystalline fraction by increasing RF power and working pressure. The deposition rates are found in the range 6 - 10 /s. A correlation between structural and optical properties has been found and discussed.
基金Project supported by the State Key Development Program for Basic Research of China(Grant No.2006CB202601)the Natural Science Research Program of the Education Bureau of Henan Province of China(Grant No.2009A140007)
文摘The structural un-uniformity of microcrystalline silicon, thin film, amorphous incubation layerc-Si:H films prepared using very high frequency plasma-enhanced chemical vapour deposition method has been investigated by Raman spectroscopy, spectroscopic ellipsometer and atomic force mi- croscopy. It was found that the formation of amorphous incubation layer was caused by the back diffusion of SiH4 and the amorphous induction of glass surface during the initial ignition process, and growth of the incubation layer can be suppressed and uniform μc-Si:H phase is generated by the application of delayed initial SiH4 density and silane profiling methods.
文摘Polycrystalline zinc oxide (ZnO) thin films have been deposited at 450°C onto glass and silicon substrates by pulsed laser deposition technique (PLD). The used source was a KrF excimer laser (248 nm, 25 ns, 5 Hz, 2 J/cm2). The effects of glass and silicon substrates on structural and optical properties of ZnO films have been investigated. X-ray diffraction patterns showed that ZnO films are polycrystalline with a hexagonal wurtzite—type structure with a strong (103) orientation and have a good crystallinity on monocrystalline Si(100) substrate. The thickness and compositional depth profile were studied by Rutherford Backscattering spectrometry (RBS). The average transmittance of ZnO films deposited on glass substrate in the visible range is 70%.
文摘Amorphous silicon ( a-Si ) thin films were deposited on glass substrate by PECVD, and polycrystalline silicon ( poly- Si ) thin films were prepared by aluminum- induced crystallization ( AlC ). The effects of annealing temperature on the microstructure and morphology were investigated. The AlC poly-Si thin films were characterized by XRD, Raman and SEM. It is found that a-Si thin film has a amorphous structure after annealing at 400℃ for 20 min, a-Si films begin to crystallize after annealing at 450 ℃ for 20 min, and the crystallinity of a-Si thin films is enhanced obviously with the increment of annealing termperature.
基金financially supported by the Ministry of Science and Technology of China under a Joint Research Program of China-Japan-Korea(No.2010DFA62170)the National Natural Science Foundation of China(No.51172123)
文摘Aluminum-induced crystallized silicon films were prepared on glass substrates by magnetron sputtering. Aluminum was added in the silicon films intermittently by the regular pulse sputtering of an aluminum target. The amount of aluminum in the silicon films can be controlled by regulating the aluminum sputtering power and the sputtering time of the undoped silicon layer; thus, the Seebeck coefficient and electrical resistivity of the polyerystaUine silicon films can be adjusted. It is found that, when the sputtering power ratio of aluminum to silicon is 16%, both the Seebeck coefficient and the electrical resistivity decrease with the increasing amount of aluminum as expected; the Seebeck coefficient and the electrical resistivity at room temperature are 0.185-0.285 mV/K and 0.30-2.4 Ω.cm, respectively. By reducing the sputtering power ratio to 7%, however, the Seebeck coefficient does not change much, though the electrical resistivity still decreases with the amount of aluminum increasing; the Seebeck coefficient and electrical resistivity at room temperature are 0.219-0.263 mV/K and 0.26-0.80 Ω·cm, respectively.
文摘We have studied the interracial reactions between amorphous LaAlO3 thin films and Si substrates, using high- resolution transmission electron microscopy and x-ray photoelectron spectroscopy. It has been shown that the interracial layer between LaAlO3 film and Si substrate chemical states show that the ratio of La 4d3/2 to Al 2p is SiLaxAlyOz. The depth distributions of La, Si and Al of the interfacial layer remains unchanged with the depth compared to that of the LaAlO3 film. Moreover, the Si content, in the interracial layer gradually decreases with increasing thickness of the interracial layer. These results strongly suggest that the Al element is not deficient in the interracial layer, as previously believed, and the formation of a SiLaxAlyOz interracial layer is mainly due to the diffusion of Si from the substrate during the LaAlO3 film deposition. With the understanding of the interracial layer formation, ones can control the interface characteristics to ensure the desired performances of devices using high-k oxides as gate dielectrics.
文摘The properties of BaTiO3 (BTO) thin films deposited on different substrates by RF magnetron sputtering were investigated. Two representative substrates were selected and different heterostructures were studied. 1) SrTiO3 (STO) single crystals as a bulk oxide reference material, and 2) silicon as a semiconductor. SrRuO3 (SRO) and Pt bottom electrodes were deposited on the silicon substrate. The BTO structural characterizations show that all the films have (001) crystallographic orientation. We have compared the electrical properties of the different samples: the same dielectric constant and polarization values were obtained independently of the nature of the substrate.
基金Project supported by the National Natural Science Foundation of China(Grant No.61574048)the Pearl River Science and Technology Nova Program of Guangzhou City,China(Grant No.201710010172)+2 种基金the International Science and Technology Cooperation Program of Guangzhou City(Grant No.201807010006)the International Cooperation Program of Guangdong Province,China(Grant No.2018A050506044)the Opening Fund of Key Laboratory of Silicon Device Technology,China(Grant No.KLSDTJJ2018-6)
文摘The instability of p-channel low-temperature polycrystalline silicon thin film transistors(poly-Si TFTs)is investigated under negative gate bias stress(NBS)in this work.Firstly,a series of negative bias stress experiments is performed,the significant degradation behaviors in current-voltage characteristics are observed.As the stress voltage decreases from-25 V to-37 V,the threshold voltage and the sub-threshold swing each show a continuous shift,which is induced by gate oxide trapped charges or interface state.Furthermore,low frequency noise(LFN)values in poly-Si TFTs are measured before and after negative bias stress.The flat-band voltage spectral density is extracted,and the trap concentration located near the Si/SiO2 interface is also calculated.Finally,the degradation mechanism is discussed based on the current-voltage and LFN results in poly-Si TFTs under NBS,finding out that Si-OH bonds may be broken and form Si*and negative charge OH-under negative bias stress,which is demonstrated by the proposed negative charge generation model.
文摘The laser equipment is one of the key equipment in the production line of the solar energy. In this article, the author de-scribes the application of the laser equipment in the production line of the amorphous silicon film solar cells, and points out that the stable and exactitude is the key direction of the future development of the laser scribing equipment.
文摘Organic devices have many advantages such as low material consumption and low energy requirements, but they have serious issues regarding long term stability. Hence we need to develop a barrier film which solves this problem. Initially, the organic devices were fabricated on glass and were encapsulated using glass and epoxy (as sealant). Gradually there was a need to shift on to flexible substrates which required encapsulation to be flexible as well. Therefore, the motivation of the work is to develop thin film encapsulation that can be made flexible. The low temperature PECVD grown films of SiOx and SiNxwere used as the barrier film. Alternate inorganic layers (2-dyads) provided barrier of ~10-2 g/m2 day and increasing the number of dyads to five improved the water vapor transmission rate (WVTR) only by one order of magnitude. However, introducing organic layers in this structure resulted in WVTR value of order 10-5 g/m2 day. The organic layers were deposited by spray technique.