A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15 nm)/a-Si:H(10 nm)/epitaxial c-Si(47 p.m)/epitaxial c-Si(3 um) structure is fabricated by using the layer transfer technique, and the emitter l...A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15 nm)/a-Si:H(10 nm)/epitaxial c-Si(47 p.m)/epitaxial c-Si(3 um) structure is fabricated by using the layer transfer technique, and the emitter layer is deposited by hot wire chemical vapour deposition. The effect of the doping concentration of the emitter layer Sd (Sd=PH3/(PH3 +SiH4+H2)) on the performance of the solar cell is studied by means of current density-voltage and external quantum efficiency. The results show that the conversion efficiency of the solar cell first increases to a maximum value and then decreases with Sd increasing from 0.1% to 0.4%. The best performance of the solar cell is obtained at Sd = 0.2% with an open circuit voltage of 534 mV, a short circuit current density of 23.35 mA/cm2, a fill factor of 63.3%, and a conversion efficiency of 7.9%.展开更多
The laser equipment is one of the key equipment in the production line of the solar energy. In this article, the author de-scribes the application of the laser equipment in the production line of the amorphous silicon...The laser equipment is one of the key equipment in the production line of the solar energy. In this article, the author de-scribes the application of the laser equipment in the production line of the amorphous silicon film solar cells, and points out that the stable and exactitude is the key direction of the future development of the laser scribing equipment.展开更多
Hydrogenated microcrystalline silicon (μc-Si:H) intrinsic films and solar cells are prepared by plasma enhanced chemical vapor deposition (PECVD) with various hydrogen dilution ratios. The influence of hydrogen ...Hydrogenated microcrystalline silicon (μc-Si:H) intrinsic films and solar cells are prepared by plasma enhanced chemical vapor deposition (PECVD) with various hydrogen dilution ratios. The influence of hydrogen dilution ratios on electrical characteristics is investigated to study the phase transition from amorphous to microcrystalline silicon. During the deposition process,the optical emission spectroscopy (OES) from plasma is recorded and compared with the Raman spectra of the films,by which the microstructure evolution of different 1-12 dilution ratios and its influence on the performance of μc-Si: H n-i-p solar cells is investigated.展开更多
This study deals with the optimization of direct current(DC) sputtered aluminum-doped zinc oxide (AZO) thin films and their incorporation into a-Si:H/μc-Si:H tandem junction thin film solar cells aiming for hig...This study deals with the optimization of direct current(DC) sputtered aluminum-doped zinc oxide (AZO) thin films and their incorporation into a-Si:H/μc-Si:H tandem junction thin film solar cells aiming for high conversion efficiency.Electrical and optical properties of AZO films,i.e.mobility,carrier density,resistivity, and transmittance,were comprehensively characterized and analyzed by varying sputtering deposition conditions, including chamber pressure,substrate temperature,and sputtering power.The correlations between sputtering processes and AZO thin film properties were first investigated.Then,the AZO films were textured by diluted hydrochloric acid wet etching.Through optimization of deposition and texturing processes,AZO films yield excellent electrical and optical properties with a high transmittance above 81%over the 380-1100 nm wavelength range,lowsheet resistance of 11Ω/□and high haze ratio of 41.3%.In preliminary experiments,the AZO films were applied to a-Si:H/μc-Si:H tandem thin film solar cells as front contact electrodes,resulting in an initial conversion efficiency of 12.5%with good current matching between subcells.展开更多
During the last few decades, photothermal radiometry(PTR) has been greatly developed and widely applied in the field of nondestructive testing. However, the traditional PTR system employs an expensive lock-in amplif...During the last few decades, photothermal radiometry(PTR) has been greatly developed and widely applied in the field of nondestructive testing. However, the traditional PTR system employs an expensive lock-in amplifier to detect the weak photothermal signal, which leads to high cost and long test time. In this paper, a fast transmission PTR system based on sampling by using an internal computer sound card was developed to lower the system cost and shorter the test time. A piece of amorphous silicon(a:Si) thin film solar cells with artificial defects was prepared and tested by the system. The results show that the sharpened defects can be identified easily and quickly according to the significant peaks of the original infrared signal sampled by the internal computer sound card. Furthermore, more detailed defects can be investigated by processing the infrared signal. These validate the effectiveness of the proposed transmission PTR system as a low cost and efficient non-destructive test technique.展开更多
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2006AA03Z219)the Jiangsu Innovation Program for Graduate Education, China (Grant No. CXZZ11 0206)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China
文摘A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15 nm)/a-Si:H(10 nm)/epitaxial c-Si(47 p.m)/epitaxial c-Si(3 um) structure is fabricated by using the layer transfer technique, and the emitter layer is deposited by hot wire chemical vapour deposition. The effect of the doping concentration of the emitter layer Sd (Sd=PH3/(PH3 +SiH4+H2)) on the performance of the solar cell is studied by means of current density-voltage and external quantum efficiency. The results show that the conversion efficiency of the solar cell first increases to a maximum value and then decreases with Sd increasing from 0.1% to 0.4%. The best performance of the solar cell is obtained at Sd = 0.2% with an open circuit voltage of 534 mV, a short circuit current density of 23.35 mA/cm2, a fill factor of 63.3%, and a conversion efficiency of 7.9%.
文摘The laser equipment is one of the key equipment in the production line of the solar energy. In this article, the author de-scribes the application of the laser equipment in the production line of the amorphous silicon film solar cells, and points out that the stable and exactitude is the key direction of the future development of the laser scribing equipment.
基金the State Key Development Program for Basic Research of China(Nos.2006CB202602,2006CB202603)Tianjin Assistant Foundation for the National Basic Research Program of China(No.07QTPTJC29500)~~
文摘Hydrogenated microcrystalline silicon (μc-Si:H) intrinsic films and solar cells are prepared by plasma enhanced chemical vapor deposition (PECVD) with various hydrogen dilution ratios. The influence of hydrogen dilution ratios on electrical characteristics is investigated to study the phase transition from amorphous to microcrystalline silicon. During the deposition process,the optical emission spectroscopy (OES) from plasma is recorded and compared with the Raman spectra of the films,by which the microstructure evolution of different 1-12 dilution ratios and its influence on the performance of μc-Si: H n-i-p solar cells is investigated.
文摘This study deals with the optimization of direct current(DC) sputtered aluminum-doped zinc oxide (AZO) thin films and their incorporation into a-Si:H/μc-Si:H tandem junction thin film solar cells aiming for high conversion efficiency.Electrical and optical properties of AZO films,i.e.mobility,carrier density,resistivity, and transmittance,were comprehensively characterized and analyzed by varying sputtering deposition conditions, including chamber pressure,substrate temperature,and sputtering power.The correlations between sputtering processes and AZO thin film properties were first investigated.Then,the AZO films were textured by diluted hydrochloric acid wet etching.Through optimization of deposition and texturing processes,AZO films yield excellent electrical and optical properties with a high transmittance above 81%over the 380-1100 nm wavelength range,lowsheet resistance of 11Ω/□and high haze ratio of 41.3%.In preliminary experiments,the AZO films were applied to a-Si:H/μc-Si:H tandem thin film solar cells as front contact electrodes,resulting in an initial conversion efficiency of 12.5%with good current matching between subcells.
基金supported by the National Natural Science Foundation of China under Grant No.61379013the Excellent Doctoral Academic Support Program under Grant No.YBXSZC2013021
文摘During the last few decades, photothermal radiometry(PTR) has been greatly developed and widely applied in the field of nondestructive testing. However, the traditional PTR system employs an expensive lock-in amplifier to detect the weak photothermal signal, which leads to high cost and long test time. In this paper, a fast transmission PTR system based on sampling by using an internal computer sound card was developed to lower the system cost and shorter the test time. A piece of amorphous silicon(a:Si) thin film solar cells with artificial defects was prepared and tested by the system. The results show that the sharpened defects can be identified easily and quickly according to the significant peaks of the original infrared signal sampled by the internal computer sound card. Furthermore, more detailed defects can be investigated by processing the infrared signal. These validate the effectiveness of the proposed transmission PTR system as a low cost and efficient non-destructive test technique.