Common tools based on landmarks in medical image elastic registration are Thin Plate Spline (TPS) and Compact Support Radial Basis Function (CSRBF). TPS forces the corresponding landmarks to exactly match each other a...Common tools based on landmarks in medical image elastic registration are Thin Plate Spline (TPS) and Compact Support Radial Basis Function (CSRBF). TPS forces the corresponding landmarks to exactly match each other and minimizes the bending energy of the whole image. However, in real application, such scheme would deform the image globally when deformation is only local. CSRBF needs manually determine the support size, although its deformation is limited local. Therefore, to limit the effect of the deformation, new Compact Support Thin Plate Spline algorithm (CSTPS) is approached, analyzed and applied. Such new approach gains optimal mutual information, which shows its registration result satisfactory. The experiments also show it can apply in both local and global elastic registration.展开更多
The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the ...The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the shape functions and derivatives can be satisfied so that the distortions hardly occur. Local weak forms are developed using the weighted residual method locally from the partial differential equations of the transient heat conduction. Here the Heaviside step function is used as the test function in each sub-domain to avoid the need for a domain integral. Essential boundary conditions can be implemented like the finite element method (FEM) as the shape functions possess the Kronecker delta property. The traditional two-point difference method is selected for the time discretization scheme. Three selected numerical examples are presented in this paper to demonstrate the availability and accuracy of the present approach comparing with the traditional thin plate spline (TPS) radial basis functions.展开更多
This study describes the spatial and temporal variation of a drought index and makes inferences regarding the environmental factors that influence this variability in the Hengduan Mountains. A drought index is typical...This study describes the spatial and temporal variation of a drought index and makes inferences regarding the environmental factors that influence this variability in the Hengduan Mountains. A drought index is typically used to determine the moisture conditions and the magnitude of water deficiency in a given area. Based on data from 26 meteorological stations over the period 1960-2012, the spatial and temporal variations of the drought index were analyzed using a thin plate smoothing splines method that considered elevation as a covariate. The drought index was estimated based on the potential evapotranspiration(E0) as defined by the Penman Monteith model modified by FAO(1998). The results of the reported analysis showed that the drought index in the Hengduan Mountains has been decreasing since 1960 at a rate of-0.008/a. This represented a progressive shift from the "sub-humid" class, which typified the wider area in the Hengduan Mountains, toward the "humid" class, which appeared in the Hengduan Mountains areas. The drought index was relatively high in the north and low in the south and the variation of the drought index varied with seasons. The drought index showed increasing trends in summer and autumn and it is greater in autumn than in summer, while it showed a decreasing trend in spring and winter. Drought index is inversely proportional to the soil relative humidity and Normalized Difference Vegetation Index(NDVI).展开更多
MEMS gyroscopes are widely used in the underwater vehicles owing to their excellent performance and affordable costs.However,the temperature sensitivity of the sensor seriously affects measurement accuracy.Therefore,i...MEMS gyroscopes are widely used in the underwater vehicles owing to their excellent performance and affordable costs.However,the temperature sensitivity of the sensor seriously affects measurement accuracy.Therefore,it is significantly to accurately identify the temperature compensation model in this paper,the calibration parameters were first extracted by using the fast calibration algorithm based on the Persistent Excitation Signal Criterion,and then,MEMS gyro temperature compensation model was established by utilizing the thin plate spline interpolation method,and the corresponding identification results were compared with the results from the polynomial fitting method.The effectiveness of the proposed algorithm has been validated through the comparative experiment.展开更多
The Hengduan Mountains Region(HMR) is essential for the future ecological protection, clean energy production,Sichuan-Xizang and Yunnan-Xizang railways, and other major infrastructure projects in China. The distributi...The Hengduan Mountains Region(HMR) is essential for the future ecological protection, clean energy production,Sichuan-Xizang and Yunnan-Xizang railways, and other major infrastructure projects in China. The distributions of climate and vegetation exhibit significant regional differentiation and vertical zonality due to the rugged longitudinal ranges and gorges and the complex disaster-prone environments in HMR. Therefore, it is urgent to develop the climate-vegetation regionalization in HMR to effectively satisfy the national requirements such as agricultural production and ecological protection, mountain disaster risk prevention, and major project construction. We here develop a new scheme of climate-vegetation regionalization with the latest demarcation outcome of HMR, the ground observation from 122 meteorological stations in HMR and its surrounding areas during 1990–2019, and the high-precision remote sensing data of land cover types. The new scheme first constructs the regionalization index system, fully considering the extraordinarily complicated geomorphic pattern of mountains and valleys, the scarcity of meteorological observations, and the remarkable differentiation of climate and vegetation in HMR. The system consists of three primary regionalization indices(i.e., days with daily average temperature steady above 10°C, aridity index, and main vegetation types, dividing the temperature zones, moisture regions, and vegetation subregions, respectively) and three auxiliary indices of the accumulated temperature above 10°C, and the temperatures in January and July. Then, the HMR is divided into five temperature zones, 20 moisture regions, and 55 vegetation subregions. Compared with previous regionalization schemes, the new scheme optimizes the climate spatial interpolation model of thin plate smoothing spline suitable for the unique terrain in HMR. Moreover, the disputed division index threshold between different climatic zones(regions) is scientifically clarified using geographical detectors. Specifically, the stepwise downscaling pane division method is initially proposed to determine the zoning boundary, alleviating the excessive dependence of the traditional zoning method on subjective experience.Besides, the scheme considers the typical regional characteristics of the complex underlying surface and the high gradient zone of climate-vegetation distribution types in HMR. Consequently, the transition zone with quick climate changes between the plateau temperate and mid-subtropical zones is divided into mountainous subtropics, taking into account the spatial distribution characteristics of climate-vegetation regionalization indices. The regionalization scheme will provide practically theoretical support for agricultural production, ecological protection, major project construction, disaster prevention and relief efforts, and other socioeconomic activities in HMR, serving as a classic case of climate-vegetation regionalization for the alpine and canyon regions with intricate underlying surface, striking regional differences, and lack of ground observations.展开更多
Image-based virtual try-on systems have significant commercial value in online garment shopping.However,prior methods fail to appropriately handle details,so are defective in maintaining the original appearance of org...Image-based virtual try-on systems have significant commercial value in online garment shopping.However,prior methods fail to appropriately handle details,so are defective in maintaining the original appearance of organizational items including arms,the neck,and in-shop garments.We propose a novel high fidelity virtual try-on network to generate realistic results.Specifically,a distributed pipeline is used for simultaneous generation of organizational items.First,the in-shop garment is warped using thin plate splines(TPS)to give a coarse shape reference,and then a corresponding target semantic map is generated,which can adaptively respond to the distribution of different items triggered by different garments.Second,organizational items are componentized separately using our novel semantic map-based image adjustment network(SMIAN)to avoid interference between body parts.Finally,all components are integrated to generatethe overall result by SMIAN.A priori dual-modalinformation is incorporated in the tail layers of SMIAN to improve the convergence rate of the network.Experiments demonstrate that the proposed method can retain better details of condition information than current methods.Our method achieves convincing quantitative and qualitative results on existing benchmark datasets.展开更多
基金the National Natural Science Foundation of China (No.60572101) the Natural Science Foundation of Guangdong Province (No.31789).
文摘Common tools based on landmarks in medical image elastic registration are Thin Plate Spline (TPS) and Compact Support Radial Basis Function (CSRBF). TPS forces the corresponding landmarks to exactly match each other and minimizes the bending energy of the whole image. However, in real application, such scheme would deform the image globally when deformation is only local. CSRBF needs manually determine the support size, although its deformation is limited local. Therefore, to limit the effect of the deformation, new Compact Support Thin Plate Spline algorithm (CSTPS) is approached, analyzed and applied. Such new approach gains optimal mutual information, which shows its registration result satisfactory. The experiments also show it can apply in both local and global elastic registration.
基金supported by the Key Program of the National Natural Science Foundation of China (Grand No. 51138001)the China-German Cooperation Project (Grand No. GZ566)+1 种基金the Innovative Research Groups Funded by the National Natural Science Foundation of China (Grand No. 51121005)the Special Funds for the Basic Scientific Research Expenses for the Central University (Grant No. DUT13LK16)
文摘The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the shape functions and derivatives can be satisfied so that the distortions hardly occur. Local weak forms are developed using the weighted residual method locally from the partial differential equations of the transient heat conduction. Here the Heaviside step function is used as the test function in each sub-domain to avoid the need for a domain integral. Essential boundary conditions can be implemented like the finite element method (FEM) as the shape functions possess the Kronecker delta property. The traditional two-point difference method is selected for the time discretization scheme. Three selected numerical examples are presented in this paper to demonstrate the availability and accuracy of the present approach comparing with the traditional thin plate spline (TPS) radial basis functions.
基金support for this research of Chinese Postdoctoral Science Foundation (2016T90961, 2015M570864)Openended fund of State Key Laboratory of Cryosphere Sciences, Chinese Academy of Sciences (SKLCSOP-2014-11)+2 种基金Project of Northwest Normal University (China) Young Teachers Scientific Research Ability Promotion Plan (NWNU-LKQN13-10)Project of National Natural Science Foundation of China (41271133, 41273010, 41361106, 41261104)Project of Major National Research Projects of China (No. 2013CBA01808)
文摘This study describes the spatial and temporal variation of a drought index and makes inferences regarding the environmental factors that influence this variability in the Hengduan Mountains. A drought index is typically used to determine the moisture conditions and the magnitude of water deficiency in a given area. Based on data from 26 meteorological stations over the period 1960-2012, the spatial and temporal variations of the drought index were analyzed using a thin plate smoothing splines method that considered elevation as a covariate. The drought index was estimated based on the potential evapotranspiration(E0) as defined by the Penman Monteith model modified by FAO(1998). The results of the reported analysis showed that the drought index in the Hengduan Mountains has been decreasing since 1960 at a rate of-0.008/a. This represented a progressive shift from the "sub-humid" class, which typified the wider area in the Hengduan Mountains, toward the "humid" class, which appeared in the Hengduan Mountains areas. The drought index was relatively high in the north and low in the south and the variation of the drought index varied with seasons. The drought index showed increasing trends in summer and autumn and it is greater in autumn than in summer, while it showed a decreasing trend in spring and winter. Drought index is inversely proportional to the soil relative humidity and Normalized Difference Vegetation Index(NDVI).
文摘MEMS gyroscopes are widely used in the underwater vehicles owing to their excellent performance and affordable costs.However,the temperature sensitivity of the sensor seriously affects measurement accuracy.Therefore,it is significantly to accurately identify the temperature compensation model in this paper,the calibration parameters were first extracted by using the fast calibration algorithm based on the Persistent Excitation Signal Criterion,and then,MEMS gyro temperature compensation model was established by utilizing the thin plate spline interpolation method,and the corresponding identification results were compared with the results from the polynomial fitting method.The effectiveness of the proposed algorithm has been validated through the comparative experiment.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA23090302)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0903)。
文摘The Hengduan Mountains Region(HMR) is essential for the future ecological protection, clean energy production,Sichuan-Xizang and Yunnan-Xizang railways, and other major infrastructure projects in China. The distributions of climate and vegetation exhibit significant regional differentiation and vertical zonality due to the rugged longitudinal ranges and gorges and the complex disaster-prone environments in HMR. Therefore, it is urgent to develop the climate-vegetation regionalization in HMR to effectively satisfy the national requirements such as agricultural production and ecological protection, mountain disaster risk prevention, and major project construction. We here develop a new scheme of climate-vegetation regionalization with the latest demarcation outcome of HMR, the ground observation from 122 meteorological stations in HMR and its surrounding areas during 1990–2019, and the high-precision remote sensing data of land cover types. The new scheme first constructs the regionalization index system, fully considering the extraordinarily complicated geomorphic pattern of mountains and valleys, the scarcity of meteorological observations, and the remarkable differentiation of climate and vegetation in HMR. The system consists of three primary regionalization indices(i.e., days with daily average temperature steady above 10°C, aridity index, and main vegetation types, dividing the temperature zones, moisture regions, and vegetation subregions, respectively) and three auxiliary indices of the accumulated temperature above 10°C, and the temperatures in January and July. Then, the HMR is divided into five temperature zones, 20 moisture regions, and 55 vegetation subregions. Compared with previous regionalization schemes, the new scheme optimizes the climate spatial interpolation model of thin plate smoothing spline suitable for the unique terrain in HMR. Moreover, the disputed division index threshold between different climatic zones(regions) is scientifically clarified using geographical detectors. Specifically, the stepwise downscaling pane division method is initially proposed to determine the zoning boundary, alleviating the excessive dependence of the traditional zoning method on subjective experience.Besides, the scheme considers the typical regional characteristics of the complex underlying surface and the high gradient zone of climate-vegetation distribution types in HMR. Consequently, the transition zone with quick climate changes between the plateau temperate and mid-subtropical zones is divided into mountainous subtropics, taking into account the spatial distribution characteristics of climate-vegetation regionalization indices. The regionalization scheme will provide practically theoretical support for agricultural production, ecological protection, major project construction, disaster prevention and relief efforts, and other socioeconomic activities in HMR, serving as a classic case of climate-vegetation regionalization for the alpine and canyon regions with intricate underlying surface, striking regional differences, and lack of ground observations.
基金supported by Young Talents Programme of Scientific Research Program of Hubei Education Department(Project No.Q20201709)Research on the Key Technology of Flexible Intelligent Manufacturing of Clothing based on Digital Twin of Hubei Key Research and Development Program(Project No.2021BAA042)Open Topic of Engineering Research Center of Hubei Province for Clothing Information(Project No.900204).
文摘Image-based virtual try-on systems have significant commercial value in online garment shopping.However,prior methods fail to appropriately handle details,so are defective in maintaining the original appearance of organizational items including arms,the neck,and in-shop garments.We propose a novel high fidelity virtual try-on network to generate realistic results.Specifically,a distributed pipeline is used for simultaneous generation of organizational items.First,the in-shop garment is warped using thin plate splines(TPS)to give a coarse shape reference,and then a corresponding target semantic map is generated,which can adaptively respond to the distribution of different items triggered by different garments.Second,organizational items are componentized separately using our novel semantic map-based image adjustment network(SMIAN)to avoid interference between body parts.Finally,all components are integrated to generatethe overall result by SMIAN.A priori dual-modalinformation is incorporated in the tail layers of SMIAN to improve the convergence rate of the network.Experiments demonstrate that the proposed method can retain better details of condition information than current methods.Our method achieves convincing quantitative and qualitative results on existing benchmark datasets.