Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crac...Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃ to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃ and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.展开更多
Unmanned aerial vehicles(UAVs)technology is rapidly advancing,offering innovative solutions for various industries,including the critical task of oil and gas pipeline surveillance.However,the limited flight time of co...Unmanned aerial vehicles(UAVs)technology is rapidly advancing,offering innovative solutions for various industries,including the critical task of oil and gas pipeline surveillance.However,the limited flight time of conventional UAVs presents a significant challenge to comprehensive and continuous monitoring,which is crucial for maintaining the integrity of pipeline infrastructure.This review paper evaluates methods for extending UAV flight endurance,focusing on their potential application in pipeline inspection.Through an extensive literature review,this study identifies the latest advancements in UAV technology,evaluates their effectiveness,and highlights the existing gaps in achieving prolonged flight operations.Advanced techniques,including artificial intelligence(AI),machine learning(ML),and deep learning(DL),are reviewed for their roles in pipeline monitoring.Notably,DL algorithms like You Only Look Once(YOLO)are explored for autonomous flight in UAV-based inspections,real-time defect detection,such as cracks,corrosion,and leaks,enhancing reliability and accuracy.A vital aspect of this research is the proposed deployment of a hybrid drone design combining lighter-than-air(LTA)and heavier-than-air(HTA)principles,achieving a balance of endurance and maneuverability.LTA vehicles utilize buoyancy to reduce energy consumption,thereby extending flight durations.The paper details the methodology for designing LTA vehicles,presenting an analysis of design parameters that align with the requirements for effective pipeline surveillance.The ongoing work is currently at Technology Readiness Level(TRL)4,where key components have been validated in laboratory conditions,with fabrication and flight testing planned for the next phase.Initial design analysis indicates that LTA configurations could offer significant advantages in flight endurance compared to traditional UAV designs.These findings lay the groundwork for future fabrication and testing phases,which will be critical in validating and assessing the proposed approach’s real-world applicability.By outlining the technical complexities and proposing specialized techniques tailored for pipeline monitoring,this paper provides a foundational framework for advancing UAV capabilities in the oil and gas sector.Researchers and industry practitioners can use this roadmap to further develop UAV-enabled surveillance solutions,aiming to improve the reliability,efficiency,and safety of pipeline monitoring.展开更多
Strong surface impact will produce strong vibration,which will pose a threat to the safety of nearby buried pipelines and other important lifeline projects.Based on the verified numerical method,a comprehensive numeri...Strong surface impact will produce strong vibration,which will pose a threat to the safety of nearby buried pipelines and other important lifeline projects.Based on the verified numerical method,a comprehensive numerical parameter analysis is conducted on the key influencing factors of the vibration isolation hole(VIH),which include hole diameter,hole net spacing,hole depth,hole number,hole arrangement,and soil parameters.The results indicate that a smaller ratio of net spacing to hole diameter,the deeper the hole,the multi-row hole,the hole adoption of staggered arrangements,and better site soil conditions can enhance the efficiency of the VIH barrier.The average maximum vibration reduction efficiency within the vibration isolation area can reach 42.2%.The vibration safety of adjacent oil pipelines during a dynamic compaction projection was evaluated according to existing standards,and the measurement of the VIH was recommended to reduce excessive vibration.The single-row vibration isolation scheme and three-row staggered arrangement with the same hole parameters are suggested according to different cases.The research findings can serve as a reference for the vibration safety analysis,assessment,and control of adjacent underground facilities under the influence of strong surface impact loads.展开更多
In the framework of the finite deformation theory, the plastic collapse analysis of thin-walled pipes subjected to the internal pressure is conducted on the basis of the unified strength criterion (USC). An analytic...In the framework of the finite deformation theory, the plastic collapse analysis of thin-walled pipes subjected to the internal pressure is conducted on the basis of the unified strength criterion (USC). An analytical solution of the burst pressure for pipes with capped ends is derived, which includes the strength differential effect and takes the influence of strength criterion on the burst pressure into account. In addition, a USC- based analytical solution of the burst pressure for end-opened pipes under the internal pressure is obtained. By discussion, it is found that for the end-capped pipes, the influence of different yield criteria and the strength differential effect on the burst pressure are significant, while for the end-opened pipes, the burst pressure is independent of the specific form of the strength criterion and strength difference in tension and compression.展开更多
During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow...During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow of the gathering pipeline in the Changning Shale Gas Field as an example to test the erosion rate and material removal mechanism of the test piece at different angles of the elbow through experiments and compares the four erosion models with the experimental results. Through analysis, it is found that the best prediction model for quartz sand-carbon steel erosion is the Oka model. Based on the Oka model, FLUENT software was used to simulate and analyze the law of erosion of the elbow of the gas gathering pipeline under different gas flow velocities, gas gathering pressure, particle size, length of L1,and bending directions of the elbow. And a spiral pipeline structure is proposed to reduce the erosion rate of the elbow under the same working conditions. The results show that this structure can reduce erosion by 34%.展开更多
Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thi...Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.展开更多
Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil aroun...Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil around submarine pipelines is prone to local scour,severely affecting their operational safety.With the Yellow River Delta as the research area and based on the renormalized group(RNG)k-εturbulence model and Stokes fifth-order wave theory,this study solves the Navier-Stokes(N-S)equation using the finite difference method.The volume of fluid(VOF)method is used to describe the fluid-free surface,and a threedimensional numerical model of currents and waves-submarine pipeline-silty sandy seabed is established.The rationality of the numerical model is verified using a self-built waveflow flume.On this basis,in this study,the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field,shear stress,and turbulence intensity is analyzed.The results indicate that(1)local scour around submarine pipelines can be divided into three stages:rapid scour,slow scour,and stable scour.The maximum scour depth occurs directly below the pipeline,and the shape of the scour pits is asymmetric.(2)As the water depth decreases and the pipeline suspension height increases,the scour becomes more intense.(3)When currents go through a pipeline,a clear stagnation point is formed in front of the pipeline,and the flow velocity is positively correlated with the depth of scour.This study can provide a valuable reference for the protection of submarine pipelines in this area.展开更多
Antibacterial resistance is a global health threat that requires further concrete action on the part of all countries.In this context,one of the biggest concerns is whether enough new antibacterial drugs are being dis...Antibacterial resistance is a global health threat that requires further concrete action on the part of all countries.In this context,one of the biggest concerns is whether enough new antibacterial drugs are being discovered and developed.Although several high-quality reviews on clinical antibacterial drug pipelines from a global perspective were published recently,none provides comprehensive information on original antibacterial drugs at clinical stages in China.In this review,we summarize the latest progress of novel antibacterial drugs approved for marketing and under clinical evaluation in China since 2019.Information was obtained by consulting official websites,searching commercial databases,retrieving literature,asking personnel from institutions or companies,and other means,and a considerable part of the data covered here has not been included in other reviews.As of June 30,2023,a total of 20 antibacterial projects from 17 Chinese pharmaceutical companies or developers were identified and updated.Among them,two new antibacterial drugs that belong to traditional antibiotic classes were approved by the National Medical Products Administration(NMPA)in China in 2019 and 2021,respectively,and 18 antibacterial agents are in clinical development,with one under regulatory evaluation,five in phase-3,six in phase-2,and six in phase-1.Most of the clinical candidates are new analogs or monocomponents of traditional antibacterial pharmacophore types,including two dual-acting hybrid antibiotics and a recombinant antibacterial protein.Overall,despite there being 17 antibacterial clinical candidates,our analysis indicates that there are still relatively few clinically differentiated antibacterial agents in stages of clinical development in China.Hopefully,Chinese pharmaceutical companies and institutions will develop more innovative and clinically differentiated candidates with good market potential in the future research and development(R&D)of original antibacterial drugs.展开更多
In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highw...In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized.展开更多
针对流水线型逐次逼近模数转换器(Pipelined SAR ADC)中残差放大器的核心运放功耗过高,从而严重限制ADC能效上限的问题,本文提出了一种新型的基于CMOS开关的自偏置全差分环形放大器(CMOS Self-biased Fully Differential Ring Amplifier...针对流水线型逐次逼近模数转换器(Pipelined SAR ADC)中残差放大器的核心运放功耗过高,从而严重限制ADC能效上限的问题,本文提出了一种新型的基于CMOS开关的自偏置全差分环形放大器(CMOS Self-biased Fully Differential Ring Amplifier,CSFRA),来替代传统运放。CSFRA通过引入CMOS开关自偏置和全差分结构,同时在非放大时序中关断电路,降低了残差放大器功耗。基于所提CSFRA,配合可降低开关功耗的检测和跳过切换方案,设计了一款12 Bit 10 MS/s的Pipelined SAR ADC。该电路基于MXIC L18B 180 nm CMOS工艺实现,实验结果表明,在10 MS/s的采样率下,该电路的SFDR和SNDR分别为75.3 dB和61.3 dB,功耗仅为944μW,其中CSFRA功耗仅为368μW。展开更多
There are lots of researches on fixture layout optimization for large thin-walled parts.Current researches focus on the positioning problem,i.e.,optimizing the positions of a constant number of fixtures.However,how to...There are lots of researches on fixture layout optimization for large thin-walled parts.Current researches focus on the positioning problem,i.e.,optimizing the positions of a constant number of fixtures.However,how to determine the number of fixtures is ignored.In most cases,the number of fixtures located on large thin-walled parts is determined based on engineering experience,which leads to huge fixture number and extra waste.Therefore,this paper constructs an optimization model to minimize the number of fixtures.The constraints are set in the optimization model to ensure that the part deformation is within the surface profile tolerance.In addition,the assembly gap between two parts is also controlled.To conduct the optimization,this paper develops an improved particle swarm optimization(IPSO)algorithm by integrating the shrinkage factor and adaptive inertia weight.In the algorithm,particles are encoded according to the fixture position.Each dimension of the particle is assigned to a sub-region by constraining the optional position range of each fixture to improve the optimization efficiency.Finally,a case study on ship curved panel assembly is provided to prove that our method can optimize the number of fixtures while meeting the assembly quality requirements.This research proposes a method to optimize the number of fixtures,which can reduce the number of fixtures and achieve deformation control at the same time.展开更多
Synchrotron microscopic data commonly suffer from poor image quality with degraded resolution incurred by instrumentation defects or experimental conditions.Image restoration methods are often applied to recover the r...Synchrotron microscopic data commonly suffer from poor image quality with degraded resolution incurred by instrumentation defects or experimental conditions.Image restoration methods are often applied to recover the reduced resolution,providing improved image details that can greatly facilitate scientific discovery.Among these methods,deconvolution techniques are straightforward,yet either require known prior information or struggle to tackle large experimental data.Deep learning(DL)-based super-resolution(SR)methods handle large data well,however data scarcity and model generalizability are problematic.In addition,current image restoration methods are mostly offline and inefficient for many beamlines where high data volumes and data complexity issues are encountered.To overcome these limitations,an online image-restoration pipeline that adaptably selects suitable algorithms and models from a method repertoire is promising.In this study,using both deconvolution and pretrained DL-based SR models,we show that different restoration efficacies can be achieved on different types of synchrotron experimental data.We describe the necessity,feasibility,and significance of constructing such an image-restoration pipeline for future synchrotron experiments.展开更多
An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing lit...An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing literature,this paper summarizes the process of fixture layout optimization and the methods applied.The process of optimization is made up of optimization objective setting,assembly variation/deformation modeling,and fixture layout optimization.This paper makes a review of the fixture layout for thin-walled parts according to these three steps.First,two different kinds of optimization objectives are introduced.Researchers usually consider in-plane variations or out-of-plane deformations when designing objectives.Then,modeling methods for assembly variation and deformation are divided into two categories:Mechanism-based and data-based methods.Several common methods are discussed respectively.After that,optimization algorithms are reviewed systematically.There are two kinds of optimization algorithms:Traditional nonlinear programming and heuristic algorithms.Finally,discussions on the current situation are provided.The research direction of fixture layout optimization in the future is discussed from three aspects:Objective setting,improving modeling accuracy and optimization algorithms.Also,a new research point for fixture layout optimization is discussed.This paper systematically reviews the research on fixture layout optimization for thin-walled parts,and provides a reference for future research in this field.展开更多
Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be f...Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be fabricated bymetallic additive manufacturing technique,such as selective laser melting(SLM).However,the maximum dimensions of actual structures are usually in a sub-meter scale,which results in restrictions on their appliance in aerospace and other fields.In this work,a meter-scale thin-walled structure with lattice infill is designed for the fuel tank supporting component of the satellite by integrating a self-supporting lattice into the thickness optimization of the thin-wall.The designed structure is fabricated by SLM of AlSi10Mg and cold metal transfer welding technique.Quasi-static mechanical tests and vibration tests are both conducted to verify the mechanical strength of the designed large-scale lattice thin-walled structure.The experimental results indicate that themeter-scale thin-walled structure with lattice infill could meet the dimension and lightweight requirements of most spacecrafts.展开更多
Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent N...Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent NGH blockages.Previous studies suggested the water film can greatly increase hydrate adhesion in gas-dominant system.Herein,by performing the molecular dynamics simulations,we find in water-dominant system,the water film plays different roles in hydrate deposition on Fe and its corrosion surfaces.Specifically,due to the strong affinity of water on Fe surface,the deposited hydrate cannot convert the adsorbed water into hydrate,thus,a water film exists.As water affinities decrease(Fe>Fe_(2)O_(3)>FeO>Fe_(3)O_(4)),adsorbed water would convert to amorphous hydrate on Fe_(2)O_(3)and form the ordered hydrate on FeO and Fe_(3)O_(4)after hydrate deposition.While absorbed water film converts to amorphous or to hydrate,the adhesion strength of hydrate continuously increases(Fe<Fe_(2)O_(3)<FeO<Fe_(3)O_(4)).This is because the detachment of deposited hydrate prefers to occur at soft region of liquid layer,the process of which becomes harder as liquid layer vanishes.As a result,contrary to gas-dominant system,the water film plays the weakening roles on hydrate adhesion in water-dominant system.Overall,our results can help to better understand the hydrate deposition mechanisms on Fe and its corrosion surfaces and suggest hydrate deposition can be adjusted by changing water affinities on pipeline surfaces.展开更多
Transporting massive quantities of carbon dioxide through a pipeline in its supercritical state is extremely convenient.Because of the unique properties of supercritical carbon dioxide,however,leakage occurring in suc...Transporting massive quantities of carbon dioxide through a pipeline in its supercritical state is extremely convenient.Because of the unique properties of supercritical carbon dioxide,however,leakage occurring in such conditions can be extremely intricate,resulting in the dispersion area following leakage being influenced by numerous factors.In this study,this problem is addressed in the frame of the so-called Unified Dispersion Model(UDM),and various influential parameters are considered,namely,leakage pressure,leakage temperature,leakage aperture,leakage angle,atmospheric stability,wind speed,and surface roughness.The results show that the supercritical carbon dioxide dispersion is primarily influenced by high air temperatures,low wind speeds,reduced surface roughness,and release temperatures slightly below the critical temperature.Additionally,leak apertures also contribute to the dispersion.The dispersion is maximized under atmospheric stable D conditions,and when the leakage angle is 0°,the farthest downwind distance is 10 times greater than that at a leakage angle of 90°under the same conditions.展开更多
基金funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan(Grant No.AP19680589).
文摘Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃ to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃ and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.
基金supported by the Yayasan Universiti Teknologi PETRONAS(YUTP)under Cost Center 015LC0-485.
文摘Unmanned aerial vehicles(UAVs)technology is rapidly advancing,offering innovative solutions for various industries,including the critical task of oil and gas pipeline surveillance.However,the limited flight time of conventional UAVs presents a significant challenge to comprehensive and continuous monitoring,which is crucial for maintaining the integrity of pipeline infrastructure.This review paper evaluates methods for extending UAV flight endurance,focusing on their potential application in pipeline inspection.Through an extensive literature review,this study identifies the latest advancements in UAV technology,evaluates their effectiveness,and highlights the existing gaps in achieving prolonged flight operations.Advanced techniques,including artificial intelligence(AI),machine learning(ML),and deep learning(DL),are reviewed for their roles in pipeline monitoring.Notably,DL algorithms like You Only Look Once(YOLO)are explored for autonomous flight in UAV-based inspections,real-time defect detection,such as cracks,corrosion,and leaks,enhancing reliability and accuracy.A vital aspect of this research is the proposed deployment of a hybrid drone design combining lighter-than-air(LTA)and heavier-than-air(HTA)principles,achieving a balance of endurance and maneuverability.LTA vehicles utilize buoyancy to reduce energy consumption,thereby extending flight durations.The paper details the methodology for designing LTA vehicles,presenting an analysis of design parameters that align with the requirements for effective pipeline surveillance.The ongoing work is currently at Technology Readiness Level(TRL)4,where key components have been validated in laboratory conditions,with fabrication and flight testing planned for the next phase.Initial design analysis indicates that LTA configurations could offer significant advantages in flight endurance compared to traditional UAV designs.These findings lay the groundwork for future fabrication and testing phases,which will be critical in validating and assessing the proposed approach’s real-world applicability.By outlining the technical complexities and proposing specialized techniques tailored for pipeline monitoring,this paper provides a foundational framework for advancing UAV capabilities in the oil and gas sector.Researchers and industry practitioners can use this roadmap to further develop UAV-enabled surveillance solutions,aiming to improve the reliability,efficiency,and safety of pipeline monitoring.
基金National Natural Science Foundation of China under Grant Nos.52078386 and 52308496SINOMACH Youth Science and Technology Fund under Grant No.QNJJ-PY-2022-02+2 种基金Young Elite Scientists Sponsorship Program under Grant No.BYESS2023432Fund of State Key Laboratory of Precision Blasting and Hubei Key Laboratory of Blasting Engineering,Jianghan University under Grant No.PBSKL2023A9Fund of China Railway Construction Group Co.,Ltd.under Grant No.LX19-04b。
文摘Strong surface impact will produce strong vibration,which will pose a threat to the safety of nearby buried pipelines and other important lifeline projects.Based on the verified numerical method,a comprehensive numerical parameter analysis is conducted on the key influencing factors of the vibration isolation hole(VIH),which include hole diameter,hole net spacing,hole depth,hole number,hole arrangement,and soil parameters.The results indicate that a smaller ratio of net spacing to hole diameter,the deeper the hole,the multi-row hole,the hole adoption of staggered arrangements,and better site soil conditions can enhance the efficiency of the VIH barrier.The average maximum vibration reduction efficiency within the vibration isolation area can reach 42.2%.The vibration safety of adjacent oil pipelines during a dynamic compaction projection was evaluated according to existing standards,and the measurement of the VIH was recommended to reduce excessive vibration.The single-row vibration isolation scheme and three-row staggered arrangement with the same hole parameters are suggested according to different cases.The research findings can serve as a reference for the vibration safety analysis,assessment,and control of adjacent underground facilities under the influence of strong surface impact loads.
基金Project supported by the National Natural Science Foundation of China (Nos. 51079128 and11172265)the Natural Science Foundation of Zhejiang Province of China (No. Y1101107)
文摘In the framework of the finite deformation theory, the plastic collapse analysis of thin-walled pipes subjected to the internal pressure is conducted on the basis of the unified strength criterion (USC). An analytical solution of the burst pressure for pipes with capped ends is derived, which includes the strength differential effect and takes the influence of strength criterion on the burst pressure into account. In addition, a USC- based analytical solution of the burst pressure for end-opened pipes under the internal pressure is obtained. By discussion, it is found that for the end-capped pipes, the influence of different yield criteria and the strength differential effect on the burst pressure are significant, while for the end-opened pipes, the burst pressure is independent of the specific form of the strength criterion and strength difference in tension and compression.
基金supported by the Petrochina's “14th Five-Year plan” Project(2021DJ2804)Sichuan Natural Science Foundation(2023NSFSC0422)。
文摘During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow of the gathering pipeline in the Changning Shale Gas Field as an example to test the erosion rate and material removal mechanism of the test piece at different angles of the elbow through experiments and compares the four erosion models with the experimental results. Through analysis, it is found that the best prediction model for quartz sand-carbon steel erosion is the Oka model. Based on the Oka model, FLUENT software was used to simulate and analyze the law of erosion of the elbow of the gas gathering pipeline under different gas flow velocities, gas gathering pressure, particle size, length of L1,and bending directions of the elbow. And a spiral pipeline structure is proposed to reduce the erosion rate of the elbow under the same working conditions. The results show that this structure can reduce erosion by 34%.
基金Project supported by the Natural Science Foundation of Jilin Province of China(Grant Nos.20240402081GH and 20220101012JC)the National Natural Science Foundation of China(Grant No.42074139)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA202308)。
文摘Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.
基金China Postdoctoral Science Foundation,Grant/Award Number:2023M731999National Natural Science Foundation of China,Grant/Award Number:52301326。
文摘Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil around submarine pipelines is prone to local scour,severely affecting their operational safety.With the Yellow River Delta as the research area and based on the renormalized group(RNG)k-εturbulence model and Stokes fifth-order wave theory,this study solves the Navier-Stokes(N-S)equation using the finite difference method.The volume of fluid(VOF)method is used to describe the fluid-free surface,and a threedimensional numerical model of currents and waves-submarine pipeline-silty sandy seabed is established.The rationality of the numerical model is verified using a self-built waveflow flume.On this basis,in this study,the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field,shear stress,and turbulence intensity is analyzed.The results indicate that(1)local scour around submarine pipelines can be divided into three stages:rapid scour,slow scour,and stable scour.The maximum scour depth occurs directly below the pipeline,and the shape of the scour pits is asymmetric.(2)As the water depth decreases and the pipeline suspension height increases,the scour becomes more intense.(3)When currents go through a pipeline,a clear stagnation point is formed in front of the pipeline,and the flow velocity is positively correlated with the depth of scour.This study can provide a valuable reference for the protection of submarine pipelines in this area.
基金supported by the National Natural Science Foundation of China(32141003 and 82330110)the CAMS Innovation Fund for Medical Sciences(CIFMS+2 种基金2021-I2M-1-039)the National Science and Technology Infrastructure of China(National Pathogen Resource Center-NPRC-32)the Fundamental Research Funds for the Central Universities(2021-PT350-001).
文摘Antibacterial resistance is a global health threat that requires further concrete action on the part of all countries.In this context,one of the biggest concerns is whether enough new antibacterial drugs are being discovered and developed.Although several high-quality reviews on clinical antibacterial drug pipelines from a global perspective were published recently,none provides comprehensive information on original antibacterial drugs at clinical stages in China.In this review,we summarize the latest progress of novel antibacterial drugs approved for marketing and under clinical evaluation in China since 2019.Information was obtained by consulting official websites,searching commercial databases,retrieving literature,asking personnel from institutions or companies,and other means,and a considerable part of the data covered here has not been included in other reviews.As of June 30,2023,a total of 20 antibacterial projects from 17 Chinese pharmaceutical companies or developers were identified and updated.Among them,two new antibacterial drugs that belong to traditional antibiotic classes were approved by the National Medical Products Administration(NMPA)in China in 2019 and 2021,respectively,and 18 antibacterial agents are in clinical development,with one under regulatory evaluation,five in phase-3,six in phase-2,and six in phase-1.Most of the clinical candidates are new analogs or monocomponents of traditional antibacterial pharmacophore types,including two dual-acting hybrid antibiotics and a recombinant antibacterial protein.Overall,despite there being 17 antibacterial clinical candidates,our analysis indicates that there are still relatively few clinically differentiated antibacterial agents in stages of clinical development in China.Hopefully,Chinese pharmaceutical companies and institutions will develop more innovative and clinically differentiated candidates with good market potential in the future research and development(R&D)of original antibacterial drugs.
基金funded by the China National Key Research and Development Program(No.2022YFC3003505)the Fundamental Research Fund for the Central Public-interest Scientific Institutes(No.DQJB23Y01)+1 种基金the National Natural Science Foundation of China(No.52278540)the Fundamental Research Fund for the Central Public-interest Scientific Institutes(No.DQJB22B28).
文摘In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized.
文摘针对流水线型逐次逼近模数转换器(Pipelined SAR ADC)中残差放大器的核心运放功耗过高,从而严重限制ADC能效上限的问题,本文提出了一种新型的基于CMOS开关的自偏置全差分环形放大器(CMOS Self-biased Fully Differential Ring Amplifier,CSFRA),来替代传统运放。CSFRA通过引入CMOS开关自偏置和全差分结构,同时在非放大时序中关断电路,降低了残差放大器功耗。基于所提CSFRA,配合可降低开关功耗的检测和跳过切换方案,设计了一款12 Bit 10 MS/s的Pipelined SAR ADC。该电路基于MXIC L18B 180 nm CMOS工艺实现,实验结果表明,在10 MS/s的采样率下,该电路的SFDR和SNDR分别为75.3 dB和61.3 dB,功耗仅为944μW,其中CSFRA功耗仅为368μW。
基金Supported by National Natural Science Foundation of China(Grant No.52005371)Shanghai Pujiang Program of China(Grant No.2020PJD071)+1 种基金Shanghai Municipal Natural Science Foundation of China(Grant No.22ZR1463900)Fundamental Research Funds for the Central Universities of China.
文摘There are lots of researches on fixture layout optimization for large thin-walled parts.Current researches focus on the positioning problem,i.e.,optimizing the positions of a constant number of fixtures.However,how to determine the number of fixtures is ignored.In most cases,the number of fixtures located on large thin-walled parts is determined based on engineering experience,which leads to huge fixture number and extra waste.Therefore,this paper constructs an optimization model to minimize the number of fixtures.The constraints are set in the optimization model to ensure that the part deformation is within the surface profile tolerance.In addition,the assembly gap between two parts is also controlled.To conduct the optimization,this paper develops an improved particle swarm optimization(IPSO)algorithm by integrating the shrinkage factor and adaptive inertia weight.In the algorithm,particles are encoded according to the fixture position.Each dimension of the particle is assigned to a sub-region by constraining the optional position range of each fixture to improve the optimization efficiency.Finally,a case study on ship curved panel assembly is provided to prove that our method can optimize the number of fixtures while meeting the assembly quality requirements.This research proposes a method to optimize the number of fixtures,which can reduce the number of fixtures and achieve deformation control at the same time.
基金supported by the Beijing Natural Science Foundation(No.1234042)the National Key Research and Development Program for Young Scientists(No.2023YFA1609900)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB37000000)the National Natural Science Foundation of China(No.12305371)。
文摘Synchrotron microscopic data commonly suffer from poor image quality with degraded resolution incurred by instrumentation defects or experimental conditions.Image restoration methods are often applied to recover the reduced resolution,providing improved image details that can greatly facilitate scientific discovery.Among these methods,deconvolution techniques are straightforward,yet either require known prior information or struggle to tackle large experimental data.Deep learning(DL)-based super-resolution(SR)methods handle large data well,however data scarcity and model generalizability are problematic.In addition,current image restoration methods are mostly offline and inefficient for many beamlines where high data volumes and data complexity issues are encountered.To overcome these limitations,an online image-restoration pipeline that adaptably selects suitable algorithms and models from a method repertoire is promising.In this study,using both deconvolution and pretrained DL-based SR models,we show that different restoration efficacies can be achieved on different types of synchrotron experimental data.We describe the necessity,feasibility,and significance of constructing such an image-restoration pipeline for future synchrotron experiments.
基金Supported by National Natural Science Foundation of China(Grant No.52005371)Shanghai Municipal Natural Science Foundation of China(Grant No.22ZR1463900)+1 种基金Fundamental Research Funds for the Central Universities of China(Grant No.22120220649)State Key Laboratory of Mechanical System and Vibration of China(Grant No.MSV202318).
文摘An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing literature,this paper summarizes the process of fixture layout optimization and the methods applied.The process of optimization is made up of optimization objective setting,assembly variation/deformation modeling,and fixture layout optimization.This paper makes a review of the fixture layout for thin-walled parts according to these three steps.First,two different kinds of optimization objectives are introduced.Researchers usually consider in-plane variations or out-of-plane deformations when designing objectives.Then,modeling methods for assembly variation and deformation are divided into two categories:Mechanism-based and data-based methods.Several common methods are discussed respectively.After that,optimization algorithms are reviewed systematically.There are two kinds of optimization algorithms:Traditional nonlinear programming and heuristic algorithms.Finally,discussions on the current situation are provided.The research direction of fixture layout optimization in the future is discussed from three aspects:Objective setting,improving modeling accuracy and optimization algorithms.Also,a new research point for fixture layout optimization is discussed.This paper systematically reviews the research on fixture layout optimization for thin-walled parts,and provides a reference for future research in this field.
基金The authors are grateful for the support by National Key Research and Development Program of China(2021YFF0500300,2020YFB1708300)the National Natural Science Foundation of China(52205280,12172041).
文摘Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be fabricated bymetallic additive manufacturing technique,such as selective laser melting(SLM).However,the maximum dimensions of actual structures are usually in a sub-meter scale,which results in restrictions on their appliance in aerospace and other fields.In this work,a meter-scale thin-walled structure with lattice infill is designed for the fuel tank supporting component of the satellite by integrating a self-supporting lattice into the thickness optimization of the thin-wall.The designed structure is fabricated by SLM of AlSi10Mg and cold metal transfer welding technique.Quasi-static mechanical tests and vibration tests are both conducted to verify the mechanical strength of the designed large-scale lattice thin-walled structure.The experimental results indicate that themeter-scale thin-walled structure with lattice infill could meet the dimension and lightweight requirements of most spacecrafts.
基金This work was supported by the National Natural Science Foundation of China(51874332,51991363)the CNPC's Major Science and Technology Projects(ZD2019-184-003)+1 种基金the Fundamental Research Funds for Central Universities(20CX05008A)“14th Five-Year plan”forward-looking basic major science and technology project of CNPC(2021DJ4901).
文摘Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent NGH blockages.Previous studies suggested the water film can greatly increase hydrate adhesion in gas-dominant system.Herein,by performing the molecular dynamics simulations,we find in water-dominant system,the water film plays different roles in hydrate deposition on Fe and its corrosion surfaces.Specifically,due to the strong affinity of water on Fe surface,the deposited hydrate cannot convert the adsorbed water into hydrate,thus,a water film exists.As water affinities decrease(Fe>Fe_(2)O_(3)>FeO>Fe_(3)O_(4)),adsorbed water would convert to amorphous hydrate on Fe_(2)O_(3)and form the ordered hydrate on FeO and Fe_(3)O_(4)after hydrate deposition.While absorbed water film converts to amorphous or to hydrate,the adhesion strength of hydrate continuously increases(Fe<Fe_(2)O_(3)<FeO<Fe_(3)O_(4)).This is because the detachment of deposited hydrate prefers to occur at soft region of liquid layer,the process of which becomes harder as liquid layer vanishes.As a result,contrary to gas-dominant system,the water film plays the weakening roles on hydrate adhesion in water-dominant system.Overall,our results can help to better understand the hydrate deposition mechanisms on Fe and its corrosion surfaces and suggest hydrate deposition can be adjusted by changing water affinities on pipeline surfaces.
基金supported by the Postdoctoral Applied Research Project of Qingdao(Grant No.qdyy20210020).
文摘Transporting massive quantities of carbon dioxide through a pipeline in its supercritical state is extremely convenient.Because of the unique properties of supercritical carbon dioxide,however,leakage occurring in such conditions can be extremely intricate,resulting in the dispersion area following leakage being influenced by numerous factors.In this study,this problem is addressed in the frame of the so-called Unified Dispersion Model(UDM),and various influential parameters are considered,namely,leakage pressure,leakage temperature,leakage aperture,leakage angle,atmospheric stability,wind speed,and surface roughness.The results show that the supercritical carbon dioxide dispersion is primarily influenced by high air temperatures,low wind speeds,reduced surface roughness,and release temperatures slightly below the critical temperature.Additionally,leak apertures also contribute to the dispersion.The dispersion is maximized under atmospheric stable D conditions,and when the leakage angle is 0°,the farthest downwind distance is 10 times greater than that at a leakage angle of 90°under the same conditions.