Thin-walled aluminum alloy tube numerical control (NC) bending with small bending radius is a complex process with multi-factor coupling effects and multi-die constraints. A significance-based optimization method of...Thin-walled aluminum alloy tube numerical control (NC) bending with small bending radius is a complex process with multi-factor coupling effects and multi-die constraints. A significance-based optimization method of the parameters was proposed based on the finite element (FE) simulation, and the significance analysis of the processing parameters on the forming quality in terms of the maximum wall thinning ratio and the maximum cross section distortion degree was implemented using the fractional factorial design. The optimum value of the significant parameter, the clearance between the tube and the wiper die, was obtained, and the values of the other parameters, including the friction coefficients and the clearances between the tube and the dies, the mandrel extension length and the boost velocity were estimated. The results are applied to aluminum alloy tube NC bending d50 mm×1 mm×75 mm and d70 mm×1.5 mm×105 mm (initial tube outside diameter D0 × initial tube wall thickness t0 × bending radius R), and qualified tubes are produced.展开更多
The anodizing parameters of voltage, current density, temperature, and electrolyte choice were assessed to find an appropriate combination for the superheated slurry cast 7075 Al alloy substrate.The alloy was anodized...The anodizing parameters of voltage, current density, temperature, and electrolyte choice were assessed to find an appropriate combination for the superheated slurry cast 7075 Al alloy substrate.The alloy was anodized in sulfuric acid electrolyte or alternatively in sulfuric acid mixed with boric acid or citric acid. The voltages applied were in the range of 15-30 V. Anodizing current densities tested were 2 and 3 A/dm^2,while temperatures tested were 5 and 15 ℃. Thickness, surface morphology, hardness,and corrosion resistance of the oxide film were then evaluated.It was found that 25 V,2 A/dm^2 and 5 ℃ were suitable for this alloy when anodized in sulfuric acid. The oxide film was smooth with uniform thickness, low porosity, high hardness,and had the highest corrosion resistance at these parameters. However, discontinuous oxide films were observed from samples anodized at higher temperature of 15 ℃.Alternative electrolytes considered were sulfuric acid mixed with boric acid or citric acid. The results showed that electrolytes with boric acid or citric acid increased thickness, hardness, corrosion resistance and quality of the oxide films.However, these oxide films were inferior to those obtained with sulfuric acid electrolyte at lower temperature(25 V, 2 A/dm^2 and5 ℃).展开更多
Recently, demand for the lightweight alloy in electric/electronic housings has been greatly increased. However, among the lightweight alloys, aluminum alloy thin-walled die casting is problematic because it is quite d...Recently, demand for the lightweight alloy in electric/electronic housings has been greatly increased. However, among the lightweight alloys, aluminum alloy thin-walled die casting is problematic because it is quite difficult to achieve sufficient fluidity and feedability to fill the thin cavity as the wall thickness becomes less than 1mm. Therefore, in this study, thin-walled die casting of aluminum (Al-Si-Cu alloy: ALDC 12) in size of notebook computer housing and thickness of 0.8 mm was investigated by solidification simulation (MAGMA soft) and actual casting experiment (Buhler Evolution B 53D). Three different types of gating design, finger, tangential and split type with 6 vertical runners, were simulated and the results showed that sound thin-walled die casting was possible with tangential and split type gating design because those gates allowed aluminum melt to flow into the thin cavity uniformly and split type gating system was preferable gating design comparing to tangential type gating system at the point of view of soundness of casting and distortion generated after solidification. Also, the solidification simulation agreed well with the actual die-casting and the casting showed no casting defects and distortion.展开更多
The automobile suspension parts of a high strength 6xxx aluminum alloy were produced using a novel technique known as near net shape casting for forging stock preparation. Based on the outline dimension of the forging...The automobile suspension parts of a high strength 6xxx aluminum alloy were produced using a novel technique known as near net shape casting for forging stock preparation. Based on the outline dimension of the forging stock, the shape of the ingot was designed as the near net shape and its casting process was studied by the numerical simulation and experimental investigation. The results show that the shrinkage of the ingot was highly correlated to its shape parameters and could be successfully forecast by the stimulation model. The casting parameters of the near net shape ingot were optimized and the near net shape 6xxx aluminum alloy ingots free of defects were cast in the laboratory. In order to obtain high performance forged suspension parts, the hot compression tests of the ingot were carried out. The results show that the subgrain fraction of the forged ingot was strongly affected by Zener-Hollomon parameters (Z parameters). The intermediate Z parameters, 1.09×10^16 s^-1, will contribute to the larger number fraction of subgrains inside the forged ingot, which contributes to the high performance of the forged products.展开更多
The development work for producing an automobile component by thixocasting using A356.2 alloy was introduced.As the first step,the alloy was electromagnetically stirred and solidified to produce a billet with non-dend...The development work for producing an automobile component by thixocasting using A356.2 alloy was introduced.As the first step,the alloy was electromagnetically stirred and solidified to produce a billet with non-dendritic microstructure.The microstructure depended on several process parameters such as stirring intensity,stirring frequency,cooling rate,and melt initial superheat.Through a series of computational studies and controlled experiments,a set of process parameters were identified to produce the best microstructures.Reheating of a billet with non-dendritic microstructure to a semisolid temperature was the next step for thixo-casting of the components.The reheating process was characterized for various reheating cycles using a vertical-type reheating machine.The induction heating cycle was optimized to obtain a near-uniform temperature distribution in radial as well as axial direction of the billet,and the heating was continued until the liquid fraction reached about 50%.These parameters were determined with the help of a computational fluid dynamics(CFD) model of die filling and solidification of the semisolid alloy.The heated billets were subsequently thixo-cast into automobile components using a real-time controlled die casting machine.The results show that the castings are near net shape,free from porosity,good surface finish and have superior mechanical properties compared to those produced by conventional die casting processes using the same alloy.展开更多
Metal matrix composites (MMCs) with high specific stiffness, high strength, improved wear resistance, and thermal properties are being increasingly used in advanced structural, aerospace, automotive, electronics, an...Metal matrix composites (MMCs) with high specific stiffness, high strength, improved wear resistance, and thermal properties are being increasingly used in advanced structural, aerospace, automotive, electronics, and wear applications. Aluminum alloy-silicon carbide composites were developed using a new combination of the vortex method and the pressure die-casting technique in the present work. Machining studies were conducted on the aluminum alloy-silicon carbide (SiC) composite work pieces using high speed steel (HSS) end-mill tools in a milling machine at different speeds and feeds. The quantitative studies on the machined work piece show that the surface finish is better for higher speeds and lower feeds. The surface roughness of the plain aluminum alloy is better than that of the aluminum alloy-silicon carbide composites. The studies on tool wear show that flank wear increases with speed and feed. The end-mill tool wear is higher on machining the aluminum alloy-silicon carbide composites than on machining the plain aluminum alloy.展开更多
The effect of depressurizing speed on mold filling behavior and entrainment of oxide film of A356 alloy was studied. Themold filling behavior and velocity fields were recorded by water simulation with particle image v...The effect of depressurizing speed on mold filling behavior and entrainment of oxide film of A356 alloy was studied. Themold filling behavior and velocity fields were recorded by water simulation with particle image velocimetry. The results show thatthe gate velocity first increased dramatically, then changed with the depressurizing speed: the gate velocity increased slowly atrelatively high depressurizing speed; at reasonable depressurizing speed, the gate velocity kept unchanged; while at lowerdepressurizing speed, the gate velocity decreased firstly and then kept unchanged. High gate velocity results in melt falling backunder gravity at higher speed. The falling velocity is the main factor of oxide film entrainment in vacuum suction casting. The designcriterion of depressurizing rate was deduced, and the A356 alloy castings were poured to test the formula. The four-point bend testand Weibull probability plots were applied to assessing the fracture mechanisms of the as-cast A356 alloy. The results illuminate amethod on designing suitable depressurizing speed for mold filling in vacuum suction casting.展开更多
基金Projects (50905144, 50875216) supported by the National Natural Science Foundation of ChinaProject (09-10) supported by the State Key Laboratory of Materials Processing and Die & Mould Technology, ChinaProject (JC201028) supported by the Northwestern Polytechnical University Foundation for Fundamental Research, China
文摘Thin-walled aluminum alloy tube numerical control (NC) bending with small bending radius is a complex process with multi-factor coupling effects and multi-die constraints. A significance-based optimization method of the parameters was proposed based on the finite element (FE) simulation, and the significance analysis of the processing parameters on the forming quality in terms of the maximum wall thinning ratio and the maximum cross section distortion degree was implemented using the fractional factorial design. The optimum value of the significant parameter, the clearance between the tube and the wiper die, was obtained, and the values of the other parameters, including the friction coefficients and the clearances between the tube and the dies, the mandrel extension length and the boost velocity were estimated. The results are applied to aluminum alloy tube NC bending d50 mm×1 mm×75 mm and d70 mm×1.5 mm×105 mm (initial tube outside diameter D0 × initial tube wall thickness t0 × bending radius R), and qualified tubes are produced.
基金financially supported by the Higher Education Research Promotionthe National Research University Project of Thailand, Office of the Higher Education (Contract No. ENG580529S)+2 种基金Center of Excellence in Materials Engineering (CEME)the Graduate Engineer Scholarship and the Graduate School ScholarshipPrince of Songkla University, including Surat Thani Campus (2016)
文摘The anodizing parameters of voltage, current density, temperature, and electrolyte choice were assessed to find an appropriate combination for the superheated slurry cast 7075 Al alloy substrate.The alloy was anodized in sulfuric acid electrolyte or alternatively in sulfuric acid mixed with boric acid or citric acid. The voltages applied were in the range of 15-30 V. Anodizing current densities tested were 2 and 3 A/dm^2,while temperatures tested were 5 and 15 ℃. Thickness, surface morphology, hardness,and corrosion resistance of the oxide film were then evaluated.It was found that 25 V,2 A/dm^2 and 5 ℃ were suitable for this alloy when anodized in sulfuric acid. The oxide film was smooth with uniform thickness, low porosity, high hardness,and had the highest corrosion resistance at these parameters. However, discontinuous oxide films were observed from samples anodized at higher temperature of 15 ℃.Alternative electrolytes considered were sulfuric acid mixed with boric acid or citric acid. The results showed that electrolytes with boric acid or citric acid increased thickness, hardness, corrosion resistance and quality of the oxide films.However, these oxide films were inferior to those obtained with sulfuric acid electrolyte at lower temperature(25 V, 2 A/dm^2 and5 ℃).
文摘Recently, demand for the lightweight alloy in electric/electronic housings has been greatly increased. However, among the lightweight alloys, aluminum alloy thin-walled die casting is problematic because it is quite difficult to achieve sufficient fluidity and feedability to fill the thin cavity as the wall thickness becomes less than 1mm. Therefore, in this study, thin-walled die casting of aluminum (Al-Si-Cu alloy: ALDC 12) in size of notebook computer housing and thickness of 0.8 mm was investigated by solidification simulation (MAGMA soft) and actual casting experiment (Buhler Evolution B 53D). Three different types of gating design, finger, tangential and split type with 6 vertical runners, were simulated and the results showed that sound thin-walled die casting was possible with tangential and split type gating design because those gates allowed aluminum melt to flow into the thin cavity uniformly and split type gating system was preferable gating design comparing to tangential type gating system at the point of view of soundness of casting and distortion generated after solidification. Also, the solidification simulation agreed well with the actual die-casting and the casting showed no casting defects and distortion.
文摘The automobile suspension parts of a high strength 6xxx aluminum alloy were produced using a novel technique known as near net shape casting for forging stock preparation. Based on the outline dimension of the forging stock, the shape of the ingot was designed as the near net shape and its casting process was studied by the numerical simulation and experimental investigation. The results show that the shrinkage of the ingot was highly correlated to its shape parameters and could be successfully forecast by the stimulation model. The casting parameters of the near net shape ingot were optimized and the near net shape 6xxx aluminum alloy ingots free of defects were cast in the laboratory. In order to obtain high performance forged suspension parts, the hot compression tests of the ingot were carried out. The results show that the subgrain fraction of the forged ingot was strongly affected by Zener-Hollomon parameters (Z parameters). The intermediate Z parameters, 1.09×10^16 s^-1, will contribute to the larger number fraction of subgrains inside the forged ingot, which contributes to the high performance of the forged products.
基金The financial support from Ministry of Mines,TIFAC,Department of Science and Technology and Defense Research and Development Organization
文摘The development work for producing an automobile component by thixocasting using A356.2 alloy was introduced.As the first step,the alloy was electromagnetically stirred and solidified to produce a billet with non-dendritic microstructure.The microstructure depended on several process parameters such as stirring intensity,stirring frequency,cooling rate,and melt initial superheat.Through a series of computational studies and controlled experiments,a set of process parameters were identified to produce the best microstructures.Reheating of a billet with non-dendritic microstructure to a semisolid temperature was the next step for thixo-casting of the components.The reheating process was characterized for various reheating cycles using a vertical-type reheating machine.The induction heating cycle was optimized to obtain a near-uniform temperature distribution in radial as well as axial direction of the billet,and the heating was continued until the liquid fraction reached about 50%.These parameters were determined with the help of a computational fluid dynamics(CFD) model of die filling and solidification of the semisolid alloy.The heated billets were subsequently thixo-cast into automobile components using a real-time controlled die casting machine.The results show that the castings are near net shape,free from porosity,good surface finish and have superior mechanical properties compared to those produced by conventional die casting processes using the same alloy.
文摘Metal matrix composites (MMCs) with high specific stiffness, high strength, improved wear resistance, and thermal properties are being increasingly used in advanced structural, aerospace, automotive, electronics, and wear applications. Aluminum alloy-silicon carbide composites were developed using a new combination of the vortex method and the pressure die-casting technique in the present work. Machining studies were conducted on the aluminum alloy-silicon carbide (SiC) composite work pieces using high speed steel (HSS) end-mill tools in a milling machine at different speeds and feeds. The quantitative studies on the machined work piece show that the surface finish is better for higher speeds and lower feeds. The surface roughness of the plain aluminum alloy is better than that of the aluminum alloy-silicon carbide composites. The studies on tool wear show that flank wear increases with speed and feed. The end-mill tool wear is higher on machining the aluminum alloy-silicon carbide composites than on machining the plain aluminum alloy.
基金Project(51375110)supported by the National Natural Science Foundation of Chain
文摘The effect of depressurizing speed on mold filling behavior and entrainment of oxide film of A356 alloy was studied. Themold filling behavior and velocity fields were recorded by water simulation with particle image velocimetry. The results show thatthe gate velocity first increased dramatically, then changed with the depressurizing speed: the gate velocity increased slowly atrelatively high depressurizing speed; at reasonable depressurizing speed, the gate velocity kept unchanged; while at lowerdepressurizing speed, the gate velocity decreased firstly and then kept unchanged. High gate velocity results in melt falling backunder gravity at higher speed. The falling velocity is the main factor of oxide film entrainment in vacuum suction casting. The designcriterion of depressurizing rate was deduced, and the A356 alloy castings were poured to test the formula. The four-point bend testand Weibull probability plots were applied to assessing the fracture mechanisms of the as-cast A356 alloy. The results illuminate amethod on designing suitable depressurizing speed for mold filling in vacuum suction casting.