期刊文献+
共找到55,276篇文章
< 1 2 250 >
每页显示 20 50 100
Evolution of Superconducting-Transition Temperature with Superfluid Density and Conductivity in Pressurized Cuprate Superconductors 被引量:1
1
作者 赵金瑜 蔡树 +15 位作者 陈逸雯 顾根大 闫宏涛 郭静 韩金宇 王鹏玉 周亚洲 李延春 李晓东 任治安 吴奇 周兴江 丁阳 向涛 毛河光 孙力玲 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第4期110-117,共8页
What factors fundamentally determine the value of superconducting transition temperature Tc in high temperature superconductors has been the subject of intense debate.Following the establishment of an empirical law kn... What factors fundamentally determine the value of superconducting transition temperature Tc in high temperature superconductors has been the subject of intense debate.Following the establishment of an empirical law known as Homes'law,there is a growing consensus in the community that the Tc value of the cuprate superconductors is closely linked to the superfluid density(ρ_(s))of its ground state and the conductivity(σ)of its normal state.However,all the data supporting this empirical law(ρ_(s)=AσT_(c))have been obtained from the ambientpressure superconductors.In this study,we present the first high-pressure results about the connection of the quantities of ρ_(s) and σ with T_(c),through the studies on the Bi_(1.74)Pb_(0.38)Sr_(1.88)CuO_(6+δ)and Bi_(2)Sr_(2)CaCu_(2)O_(8+δ),in which the value of their high-pressure resistivity(ρ=1/σ)is achieved by adopting our newly established method,while the quantity ofρs is extracted using Homes'law.We highlight that the Tc values are strongly linked to the joint response factors of magnetic field and electric field,i.e.,ρ_(s) and σ,respectively,implying that the physics determining T_(c) is governed by the intrinsic electromagnetic fields of the system. 展开更多
关键词 SUPERconductORS TRANSITION conductIVITY
下载PDF
An ultrathin and robust single-ion conducting interfacial layer for dendrite-free lithium metal batteries 被引量:1
2
作者 Ting-Ting Lv Jia Liu +2 位作者 Li-Jie He Hong Yuan Tong-Qi Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期414-421,共8页
The practical application of rechargeable lithium metal batteries(LMBs) encounters significant challenges due to the notorious dendrite growth triggered by uneven Li deposition behaviors. In this work,a mechanically r... The practical application of rechargeable lithium metal batteries(LMBs) encounters significant challenges due to the notorious dendrite growth triggered by uneven Li deposition behaviors. In this work,a mechanically robust and single-ion-conducting interfacial layer, fulfilled by the strategic integration of flexible cellulose acetate(CA) matrix with rigid graphene oxide(GO) and Li F fillers(termed the CGL layer), is rationally devised to serve as a stabilizer for dendrite-free lithium(Li) metal batteries. The GCL film exhibits favorable mechanical properties with high modulus and flexibility that help to relieve interface fluctuations. More crucially, the electron-donating carbonyl groups(C=O) enriched in GCL foster a strengthened correlation with Li^(+), which availably aids the Li^(+)desolvation process and expedites facile Li^(+)mobility, yielding exceptional Li^(+) transference number of 0.87. Such single-ion conductive properties regulate rapid and uniform interfacial transport kinetics, mitigating the growth of Li dendrites and the decomposition of electrolytes. Consequently, stable Li anode with prolonged cycle stabilities and flat deposition morphologies are realized. The Li||LiFePO_(4) full cells with CGL protective layer render an outstanding cycling capability of 500 cycles at 3 C, and an ultrahigh capacity retention of 99.99% for over 220 cycles even under harsh conditions. This work affords valuable insights into the interfacial regulation for achieving high-performance LMBs. 展开更多
关键词 Single-ion conductive Interfacial layer Cellulose acetate Dendrite-free morphologies Lithium metal batteries
下载PDF
Optimization of Fixture Number in Large Thin-Walled Parts Assembly Based on IPSO
3
作者 Changhui Liu Jing Wang +3 位作者 Ying Zheng Ke Jin Jianbo Yu Jianfeng Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期213-227,共15页
There are lots of researches on fixture layout optimization for large thin-walled parts.Current researches focus on the positioning problem,i.e.,optimizing the positions of a constant number of fixtures.However,how to... There are lots of researches on fixture layout optimization for large thin-walled parts.Current researches focus on the positioning problem,i.e.,optimizing the positions of a constant number of fixtures.However,how to determine the number of fixtures is ignored.In most cases,the number of fixtures located on large thin-walled parts is determined based on engineering experience,which leads to huge fixture number and extra waste.Therefore,this paper constructs an optimization model to minimize the number of fixtures.The constraints are set in the optimization model to ensure that the part deformation is within the surface profile tolerance.In addition,the assembly gap between two parts is also controlled.To conduct the optimization,this paper develops an improved particle swarm optimization(IPSO)algorithm by integrating the shrinkage factor and adaptive inertia weight.In the algorithm,particles are encoded according to the fixture position.Each dimension of the particle is assigned to a sub-region by constraining the optional position range of each fixture to improve the optimization efficiency.Finally,a case study on ship curved panel assembly is provided to prove that our method can optimize the number of fixtures while meeting the assembly quality requirements.This research proposes a method to optimize the number of fixtures,which can reduce the number of fixtures and achieve deformation control at the same time. 展开更多
关键词 Assembly quality Large thin-walled parts Fixture layout PSO FEM
下载PDF
Development of Fixture Layout Optimization for Thin-Walled Parts:A Review
4
作者 Changhui Liu Jing Wang +3 位作者 Binghai Zhou Jianbo Yu Ying Zheng Jianfeng Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期15-39,共25页
An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing lit... An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing literature,this paper summarizes the process of fixture layout optimization and the methods applied.The process of optimization is made up of optimization objective setting,assembly variation/deformation modeling,and fixture layout optimization.This paper makes a review of the fixture layout for thin-walled parts according to these three steps.First,two different kinds of optimization objectives are introduced.Researchers usually consider in-plane variations or out-of-plane deformations when designing objectives.Then,modeling methods for assembly variation and deformation are divided into two categories:Mechanism-based and data-based methods.Several common methods are discussed respectively.After that,optimization algorithms are reviewed systematically.There are two kinds of optimization algorithms:Traditional nonlinear programming and heuristic algorithms.Finally,discussions on the current situation are provided.The research direction of fixture layout optimization in the future is discussed from three aspects:Objective setting,improving modeling accuracy and optimization algorithms.Also,a new research point for fixture layout optimization is discussed.This paper systematically reviews the research on fixture layout optimization for thin-walled parts,and provides a reference for future research in this field. 展开更多
关键词 thin-walled parts Assembly quality Fixture layout optimization Modeling methods Optimization algorithms
下载PDF
Meter-Scale Thin-Walled Structure with Lattice Infill for Fuel Tank Supporting Component of Satellite:Multiscale Design and Experimental Verification
5
作者 Xiaoyu Zhang Huizhong Zeng +6 位作者 Shaohui Zhang Yan Zhang Mi Xiao Liping Liu Hao Zhou Hongyou Chai Liang Gao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期201-220,共20页
Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be f... Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be fabricated bymetallic additive manufacturing technique,such as selective laser melting(SLM).However,the maximum dimensions of actual structures are usually in a sub-meter scale,which results in restrictions on their appliance in aerospace and other fields.In this work,a meter-scale thin-walled structure with lattice infill is designed for the fuel tank supporting component of the satellite by integrating a self-supporting lattice into the thickness optimization of the thin-wall.The designed structure is fabricated by SLM of AlSi10Mg and cold metal transfer welding technique.Quasi-static mechanical tests and vibration tests are both conducted to verify the mechanical strength of the designed large-scale lattice thin-walled structure.The experimental results indicate that themeter-scale thin-walled structure with lattice infill could meet the dimension and lightweight requirements of most spacecrafts. 展开更多
关键词 thin-walled structure lattice infill supporting component selective laser melting SATELLITE
下载PDF
Ultralow-Temperature Heat Transport Evidence for Residual Density of States in the Superconducting State of CsV_(3)Sb_(5 )
6
作者 C.C.Zhao L.S.Wang +17 位作者 W.Xia Q.W.Yin H.B.Deng G.W.Liu J.J.Liu X.Zhang J.M.Ni Y.Y.Huang C.P.Tu Z.C.Tao Z.J.Tu C.S.Gong Z.W.Wang H.C.Lei Y.F.Guo X.F.Yang J.X.Yin S.Y.Li 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第12期141-148,共8页
V-based kagome superconductors AV_(3)Sb_(5)(A=K,Rb,and Cs)host a charge density wave(CDW)and a topological nontrivial band structure,thereby providing a great platform to study the interplay of superconductivity(SC),C... V-based kagome superconductors AV_(3)Sb_(5)(A=K,Rb,and Cs)host a charge density wave(CDW)and a topological nontrivial band structure,thereby providing a great platform to study the interplay of superconductivity(SC),CDW,frustration,and topology.Here,we report ultralow-temperature thermal conductivity measurements of CsV_(3)Sb_(5 ) and Ta-doped Cs((V_(0.86)Ta_(0.14)))_(3)Sb_(5) and scanning tunneling microscopy(STM)measurements of CsV_(3)Sb_(5 ).The finite residual linear term of thermal conductivity at zero magnetic field suggests the existence of a residual density of states(DOS)in the superconducting state of CsV_(3)Sb_(5 ).This is supported by the observation of non-zero conductance at zero bias in STM spectrum at an electronic temperature of 90 mK.However,in Cs(V_(0.86)Ta_(0.14))_(3)Sb_(5),which does not have CDW order,there is no evidence for the residual DOS.These results show the importance of CDW order for the residual DOS,and that a nodal s-wave gap or residual Fermi arc may be the origin of the residual DOS in such an unusual multiband kagome superconductor,CsV_(3)Sb_(5 ). 展开更多
关键词 (3) thereby conductIVITY
下载PDF
An electromagnetic semi-active dynamic vibration absorber for thin-walled workpiece vibration suppression in mirror milling
7
作者 Jianghua KONG Bei DING +3 位作者 Wei WANG Zhixia WANG Juliang XIAO Hongyun QIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第8期1315-1334,共20页
As critical components of aircraft skins and rocket fuel storage tank shells,large thin-walled workpieces are susceptible to vibration and deformation during machining due to their weak local stiffness.To address thes... As critical components of aircraft skins and rocket fuel storage tank shells,large thin-walled workpieces are susceptible to vibration and deformation during machining due to their weak local stiffness.To address these challenges,we propose a novel tunable electromagnetic semi-active dynamic vibration absorber(ESADVA),which integrates with a magnetic suction follower to form a followed ESADVA(follow-ESADVA)for mirror milling.This system combines a tunable magnet oscillator with a follower,enabling real-time vibration absorption and condition feedback throughout the milling process.Additionally,the device supports self-sensing and frequency adjustment by providing feedback to a linear actuator,which alters the distance between magnets.This resolves the traditional issue of being unable to directly monitor vibration at the machining point due to space constraints and tool interference.The frequency shift characteristics and vibration absorption performance are comprehensively investigated.Theoretical and experimental results demonstrate that the prototyped follow-ESADVA achieves frequency synchronization with the milling tool,resulting in a vibration suppression rate of approximately 47.57%.Moreover,the roughness of the machined surface decreases by18.95%,significantly enhancing the surface quality.The results of this work pave the way for higher-quality machined surfaces and a more stable mirror milling process. 展开更多
关键词 semi-active dynamic vibration absorber(SADVA) mirror milling selfsensing vibration absorption tuning thin-walled workpiece
下载PDF
Numerical Analysis of Cold-Formed Thin-Walled Steel Short Columns with Pitting Corrosion during Bridge Construction
8
作者 Hongzhang Wang Jing Guo +3 位作者 Shanjun Yang Chaoheng Cheng Jing Chen Zhihao Chen 《Structural Durability & Health Monitoring》 EI 2024年第2期181-196,共16页
Pitting corrosion is harmful during bridge construction,which will lead to uneven roughness of steel surfaces and reduce the thickness of steel.Hence,the effect of pitting corrosion on the mechanical properties of col... Pitting corrosion is harmful during bridge construction,which will lead to uneven roughness of steel surfaces and reduce the thickness of steel.Hence,the effect of pitting corrosion on the mechanical properties of cold-formed thin-walled steel stub columns is studied,and the empirical formulas are established through regression fitting to predict the ultimate load of web and flange under pitting corrosion.In detail,the failure modes and load-displacement curves of specimens with different locations,area ratios,and depths are obtained through a large number of non-linear finite element analysis.As for the specimens with pitting corrosion on the web,all the specimens are subject to local buckling failure,and the failure mode will not change with pitting corrosion,but the failure location will change with pitting corrosion location;the size,location,and area ratio of pitting corrosion have little influence on the ultimate load of cold-formed thin-walled steel short columns,but the loss rate of pitting corrosion section area has a greater impact on the ultimate bearing capacity.As for the specimen with flange pitting corrosion,the location and area ratio of pitting corrosion have less influence on the ultimate load of cold-formed thin-walled steel short columns,and the section area loss rate has greater influence on the ultimate bearing capacity;the impact of web pitting corrosion on the ultimate load is greater than that of flange pitting corrosion under the same condition of pitting corrosion section area.The prediction formulas of limit load which are suitable for pitting corrosion of web and flange are established,which can provide a reference for performance evaluation of corroded cold-formed thin-walled steel. 展开更多
关键词 Pitting corrosion cold-formed thin-walled steel ultimate load prediction formula short columns
下载PDF
Hierarchical structures on platinum-iridium substrates enhancing conducting polymer adhesion
9
作者 Linze Li Changqing Jiang Luming Li 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第6期889-898,共10页
Conducting polymers(CPs),including poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS),are promising coating materials for neural electrodes.However,the weak adhesion of CP coatings to substrates such a... Conducting polymers(CPs),including poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS),are promising coating materials for neural electrodes.However,the weak adhesion of CP coatings to substrates such as platinum-iridium is a significant challenge that limits their practical application.To address this issue,we used femtosecond laser-prepared hierarchical structures on platinum-iridium(Pt-Ir)substrates to enhance the adhesion of PEDOT:PSS coatings.Next,we used cyclic voltammetry(CV)stress and accelerated aging tests to evaluate the stability of both drop cast and electrodeposited PEDOT:PSS coatings on Pt-Ir substrates,both with and without hierarchical structures.Our results showed that after 2000 CV cycles or five weeks of aging at 60℃,the morphology and electrochemical properties of the coatings on the Pt-Ir substrates with hierarchical structures remained relatively stable.In contrast,we found that smooth Pt-Ir substrate surfaces caused delamination of the PEDOT:PSS coating and exhibited both decreased charge storage capacity and increased impedance.Overall,enhancing the stability of PEDOT:PSS coatings used on common platinum-iridium neural electrodes offers great potential for improving their electrochemical performance and developing new functionalities. 展开更多
关键词 Hierarchical structures Femtosecond laser conducting polymers Neural electrodes Stability
下载PDF
High thermal conductivity and high strength magnesium alloy for high pressure die casting ultrathin-walled components 被引量:3
10
作者 Jian Rong Wenlong Xiao +6 位作者 Xinqing Zhao Chaoli Ma Haimiao Liao Donglei He Ming Chen Meng Huang Chen Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第1期88-96,共9页
With the rapid development of 3C industries,the demand for high-thermal-conductivity magnesium alloys with high mechanical performance is increasing quickly.However,the thermal conductivities of most common Mg foundry... With the rapid development of 3C industries,the demand for high-thermal-conductivity magnesium alloys with high mechanical performance is increasing quickly.However,the thermal conductivities of most common Mg foundry alloys(such as Mg-9wt%-1wt%Zn)are still relatively low.In this study,we developed a high-thermal-conductivity Mg-4Al-4Zn-4RE-1Ca(wt%,AZEX4441)alloy with good mechanical properties for ultrathin-walled cellphone components via high-pressure die casting(HPDC).The HPDC AZEX4441 alloy exhibited a fine homogeneous microstructure(average grain size of 2.8μm)with granular Al_(11)RE_(3),fibrous Al_(2)REZn_(2),and networked Ca_(6)Mg_(2)Zn_(3) phases distributed at the grain boundaries.The room-temperature thermal conductivity of the HPDC AZEX4441 alloy was 94.4 W·m^(-1)·K^(-1),which was much higher than 53.7 W·m^(-1)·K^(-1) of the HPDC AZ91D alloy.Al and Zn in the AZEX4441 alloy were largely consumed by the formation of Al_(11)RE_(3),Al_(2)REZn_(2),and Ca_(2)Mg_(6)Zn_(3) phases because of the addition of RE and Ca.Therefore,the lattice distortion induced by solute atoms of the AZEX4441 alloy(0.171%)was much lower than that of the AZ91D alloy(0.441%),which was responsible for the high thermal conductivity of the AZEX4441 alloy.The AZEX4441 alloy exhibited a high yield strength of~185 MPa,an ultimate tensile strength of~233 MPa,and an elongation of~4.2%.This result indicated that the tensile properties were comparable with those of the AZ91D alloy.Therefore,this study contributed to the development of high-performance Mg alloys with a combination of high thermal conductivity,high strength,and good castability. 展开更多
关键词 magnesium alloys microstructure thermal conductivity mechanical properties high-pressure die casting
下载PDF
Disorder effects in NbTiN superconducting resonators
11
作者 吕伟涛 支强 +2 位作者 胡洁 李婧 史生才 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期482-486,共5页
Disordered superconducting materials like NbTiN possess a high kinetic inductance fraction and an adjustable critical temperature, making them a good choice for low-temperature detectors. Their energy gap(D), critical... Disordered superconducting materials like NbTiN possess a high kinetic inductance fraction and an adjustable critical temperature, making them a good choice for low-temperature detectors. Their energy gap(D), critical temperature(T_(c)),and quasiparticle density of states(QDOS) distribution, however, deviate from the classical BCS theory due to the disorder effects. The Usadel equation, which takes account of elastic scattering, non-elastic scattering, and electro–phonon coupling,can be applied to explain and describe these deviations. This paper presents numerical simulations of the disorder effects based on the Usadel equation to investigate their effects on the △, Tc, QDOS distribution, and complex conductivity of the NbTiN film. Furthermore, NbTiN superconducting resonators with coplanar waveguide(CPW) structures are fabricated and characterized at different temperatures to validate our numerical simulations. The pair-breaking parameter α and the critical temperature in the pure state T_(c)^(P) of our NbTiN film are determined from the experimental results and numerical simulations. This study has significant implications for the development of low-temperature detectors made of disordered superconducting materials. 展开更多
关键词 effects of disorder NbTiN superconducting film Usadel equation complex conductivity superconducting resonator
下载PDF
Conducting Polymer-Based e-Refinery for Sustainable Hydrogen Peroxide Production
12
作者 Zhixing Wu Penghui Ding +7 位作者 Viktor Gueskine Robert Boyd Eric Daniel G■owacki Magnus Odén Xaνier Crispin Magnus Berggren Emma M.Björk Mikhail Vagin 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期334-342,共9页
Electrocatalysis enables the industrial transition to sustainable production of chemicals using abundant precursors and electricity from renewable sources.De-centralized production of hydrogen peroxide(H_(2)O_(2))from... Electrocatalysis enables the industrial transition to sustainable production of chemicals using abundant precursors and electricity from renewable sources.De-centralized production of hydrogen peroxide(H_(2)O_(2))from water and oxygen of air is highly desirable for daily life and industry.We report an effective electrochemical refinery(e-refinery)for H_(2)O_(2)by means of electrocatalysis-controlled comproportionation reaction(2_(H)O+o→2HO),feeding pure water and oxygen only.Mesoporous nickel(Ⅱ)oxide(NiO)was used as electrocatalyst for oxygen evolution reaction(OER),producing oxygen at the anode.Conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)drove the oxygen reduction reaction(ORR),forming H_(2)O_(2)on the cathode.The reactions were evaluated in both half-cell and device configurations.The performance of the H_(2)O_(2)e-refinery,assembled on anion-exchange solid electrolyte and fed with pure water,was limited by the unbalanced ionic transport.Optimization of the operation conditions allowed a conversion efficiency of 80%. 展开更多
关键词 conducting polymer hydrogen peroxide nickel(Ⅱ)oxide oxygen evolution reaction oxygen reduction reaction
下载PDF
A Room-Temperature Chloride-Conducting Metal-Organic Crystal[Al(DMSO)_(6)]Cl_(3) for Potential Solid-State Chloride-Shuttle Batteries
13
作者 Bing Wu Jan Luxa +5 位作者 Jiří Šturala Shuangying Wei Lukáš Děkanovský Abhilash Karuthedath Parameswaran Min Li Zdenek Sofer 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期107-113,共7页
The growing demand for substitutes of lithium chemistries in battery leads to a surge in budding novel anion-based electrochemical energy storage,where the chloride ion batteries(CIBs)take over the role.The applicatio... The growing demand for substitutes of lithium chemistries in battery leads to a surge in budding novel anion-based electrochemical energy storage,where the chloride ion batteries(CIBs)take over the role.The application of CIBs is limited by the dissolution and side reaction of chloride-based electrode materials in a liquid electrolyte.On the flipside,its solid-state electrolytes are scarcely reported due to the challenge in realizing fast Cl^(-)conductivity.The present study reports[Al(DMSO)_(6)]Cl_(3),a solid-state metal-organic material,allows chloride ion transfer.The strong Al-Cl bonds in AlCl_(3)are broken down after coordinating of Al^(3+)by ligand DMSO,and Cl^(-)in the resulting compound is weakly bound to complexions[Al(DMSO)_(6)]^(3+),which may facilitate Cl^(-)migration.By partial replacement of Cl^(-)with PF_(6)^(-),the room-temperature ionic conductivity of as-prepared electrolyte is increased by one order of magnitude from 2.172×10^(-5)S cm^(-1)to 2.012×10^(-4)S cm^(-1).When they are assembled with Ag(anode)/Ag-AgCl(cathode)electrode system,reversible electrochemical redox reactions occur on both sides,demonstrating its potential for solid-state chloride ion batteries.The strategy by weakening the bonding interaction using organic ligands between Cl^(-)and central metallic ions may provide new ideas for developing solid chloride-ion conductors. 展开更多
关键词 [Al(DMSO)_(6)]Cl_(3) chloride-ion batteries ionic conductivity METAL-ORGANIC solid-state electrolytes
下载PDF
Inter‑Skeleton Conductive Routes Tuning Multifunctional Conductive Foam for Electromagnetic Interference Shielding,Sensing and Thermal Management
14
作者 Xufeng Li Chunyan Chen +10 位作者 Zhenyang Li Peng Yi Haihan Zou Gao Deng Ming Fang Junzhe He Xin Sun Ronghai Yu Jianglan Shui Caofeng Pan Xiaofang Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期19-36,共18页
Conductive polymer foam(CPF)with excellent compressibility and variable resistance has promising applications in electromagnetic interference(EMI)shielding and other integrated functions for wearable electronics.Howev... Conductive polymer foam(CPF)with excellent compressibility and variable resistance has promising applications in electromagnetic interference(EMI)shielding and other integrated functions for wearable electronics.However,its insufficient change amplitude of resistance with compressive strain generally leads to a degradation of shielding performance during deformation.Here,an innovative loading strategy of conductive materials on polymer foam is proposed to significantly increase the contact probability and contact area of conductive components under compression.Unique inter-skeleton conductive films are constructed by loading alginate-decorated magnetic liquid metal on the polymethacrylate films hanged between the foam skeleton(denoted as AMLM-PM foam).Traditional point contact between conductive skeletons under compression is upgraded to planar contact between conductive films.Therefore,the resistance change of AMLM-PM reaches four orders of magnitude under compression.Moreover,the inter-skeleton conductive films can improve the mechanical strength of foam,prevent the leakage of liquid metal and increase the scattering area of EM wave.AMLM-PM foam has strain-adaptive EMI shielding performance and shows compression-enhanced shielding effectiveness,solving the problem of traditional CPFs upon compression.The upgrade of resistance response also enables foam to achieve sensitive pressure sensing over a wide pressure range and compression-regulated Joule heating function. 展开更多
关键词 Inter-skeleton conductive films conductive polymer foam Liquid metal Electromagnetic interference shielding
下载PDF
Laser‑Induced Highly Stable Conductive Hydrogels for Robust Bioelectronics
15
作者 Yibo Li Hao Zhou +1 位作者 Huayong Yang Kaichen Xu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期117-120,共4页
Despite the promising progress in conductive hydrogels made with pure conducting polymer,great challenges remain in the interface adhesion and robustness in longterm monitoring.To address these challenges,Prof.Seung H... Despite the promising progress in conductive hydrogels made with pure conducting polymer,great challenges remain in the interface adhesion and robustness in longterm monitoring.To address these challenges,Prof.Seung Hwan Ko and Taek-Soo Kim’s team introduced a laserinduced phase separation and adhesion method for fabricating conductive hydrogels consisting of pure poly(3,4-ethylenedioxythiophene):polystyrene sulfonate on polymer substrates.The laser-induced phase separation and adhesion treated conducting polymers can be selectively transformed into conductive hydrogels that exhibit wet conductivities of 101.4 S cm^(−1)with a spatial resolution down to 5μm.Moreover,they maintain impedance and charge-storage capacity even after 1 h of sonication.The micropatterned electrode arrays demonstrate their potential in long-term in vivo signal recordings,highlighting their promising role in the field of bioelectronics. 展开更多
关键词 Laser processing conductive hydrogels Stable interface Bio-interfacing electrodes Bioelectronic application
下载PDF
Aligned Ion Conduction Pathway of Polyrotaxane‑Based Electrolyte with Dispersed Hydrophobic Chains for Solid‑State Lithium–Oxygen Batteries
16
作者 Bitgaram Kim Myeong‑Chang Sung +4 位作者 Gwang‑Hee Lee Byoungjoon Hwang Sojung Seo Ji‑Hun Seo Dong‑Wan Kim 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期169-186,共18页
A critical challenge hindering the practical application of lithium–oxygen batteries(LOBs)is the inevitable problems associated with liquid electrolytes,such as evaporation and safety problems.Our study addresses the... A critical challenge hindering the practical application of lithium–oxygen batteries(LOBs)is the inevitable problems associated with liquid electrolytes,such as evaporation and safety problems.Our study addresses these problems by proposing a modified polyrotaxane(mPR)-based solid polymer electrolyte(SPE)design that simultaneously mitigates solvent-related problems and improves conductivity.mPR-SPE exhibits high ion conductivity(2.8×10^(−3)S cm^(−1)at 25℃)through aligned ion conduction pathways and provides electrode protection ability through hydrophobic chain dispersion.Integrating this mPR-SPE into solid-state LOBs resulted in stable potentials over 300 cycles.In situ Raman spectroscopy reveals the presence of an LiO_(2)intermediate alongside Li_(2)O_(2)during oxygen reactions.Ex situ X-ray diffraction confirm the ability of the SPE to hinder the permeation of oxygen and moisture,as demonstrated by the air permeability tests.The present study suggests that maintaining a low residual solvent while achieving high ionic conductivity is crucial for restricting the sub-reactions of solid-state LOBs. 展开更多
关键词 Solid polymer electrolyte Lithium-oxygen batteries Polyrotaxane ion conductivity Hydrophobic chain
下载PDF
Sensitivity of springback and section deformation to process parameters in rotary draw bending of thin-walled rectangular H96 brass tube 被引量:8
17
作者 朱英霞 刘郁丽 杨合 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第9期2233-2240,共8页
In order to study the effects of the process parameters on springback and section deformation, a sensitivity analysis model was established based on the combination use of the multi-parameter sensitivity analysis meth... In order to study the effects of the process parameters on springback and section deformation, a sensitivity analysis model was established based on the combination use of the multi-parameter sensitivity analysis method and the springback/section deformation prediction finite element model, and by using this model the sensitivities of the springback and the section deformation to process parameters were analyzed and compared. The results show that the most sensitive process conditions for springback angle are the boost speed and the pressure of pressure die, and the most sensitive process condition for section deformation is the number of cores. When the clamp force, the boost speed and the pressure of pressure die are utilized to control section deformation, the effect of these process parameters on springback should be considered. When the process parameters are mainly used to control springback, the effect of these process parameters on the section deformation should be always considered. 展开更多
关键词 thin-walled rectangular H96 brass tube rotary draw bending sensitivity analysis SPRINGBACK section deformation
下载PDF
VIBRATION IN HIGH-SPEED MILLING OF THIN-WALLED COMPONENTS 被引量:2
18
作者 汪通悦 何宁 李亮 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第2期112-117,共6页
To investigate the vibration principle in machining thin-walled components, a dynamic model for end milling of flexible structures is built based on considering the variations in the dynamic chip thickness and the dif... To investigate the vibration principle in machining thin-walled components, a dynamic model for end milling of flexible structures is built based on considering the variations in the dynamic chip thickness and the differences between up-milling and down-milling. Two milling experiments verify the model. Experimental results show that the model can predict the milling force and displacements simultaneously in the dynamic milling process. 展开更多
关键词 thin-walled component VIBRATION mechanistic model cutting parameter
下载PDF
Preparation of YBa_2Cu_3O_(7-δ) superconducting thick film on Ni-W tapes via electrophoretic deposition
19
作者 罗清威 李英楠 +1 位作者 李凤华 樊占国 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期120-125,共6页
The preparation of La0.4Sr0.6TiO3 (LSTO) buffer layer and YBa2Cu3O7-δ(YBCO) superconducting thick film by a low cost technology was studied. The crystal orientation of LSTO and YBCO films was detected by X-ray di... The preparation of La0.4Sr0.6TiO3 (LSTO) buffer layer and YBa2Cu3O7-δ(YBCO) superconducting thick film by a low cost technology was studied. The crystal orientation of LSTO and YBCO films was detected by X-ray diffraction, the conductivity of LSTO film and superconductivity of YBCO coating were investigated by standard four-probe method. Excellent in-plane alignment, smooth and dense LSTO buffer layer was successfully prepared on textured Ni-W taps by metal organic deposition (MOD). YBCO thick film was fabricated by electrophoretic deposition (EPD). The effects of applied voltage and deposition time on the YBCO coatings properties were studied. The results show that the critical current density of the YBCO coating deposited under 138 V for 35 min was about 600 A/cm2 (0 T, 77 K). 展开更多
关键词 YBCO conductive buffer layer YBCO superconducting thick film electrophoretic deposition
下载PDF
Conducting Tissue of Leaves in Nageia and Podocarpus
20
作者 孙同兴 《Agricultural Science & Technology》 CAS 2008年第4期92-95,共4页
The conducting tissue structure of transverse and longitudinal sections was observed on leaves of Podocarpus and Nageia.Results showed:in Podocarpus leaves,there is only one midrib,the xylem tracheid of midrib vascula... The conducting tissue structure of transverse and longitudinal sections was observed on leaves of Podocarpus and Nageia.Results showed:in Podocarpus leaves,there is only one midrib,the xylem tracheid of midrib vascular bundle is multi-form,transfusion tissue belongs to Cycas-type and transfusion tracheids are isodiametric,the accessory transfusion tracheids between palisade tissue and sponge tissue are developed;in Nageia leaves,there are plenty of parallel leaves,the xylem tracheids of each vein are relatively simple,transfusion tissue belongs to Taxus-type and transfusion tracheids are longer in longitudinal section than that in transverse section,the accessory transfusion tissue between palisade tissue and sponge tissue is absent.Considering other differences that in leaves of Podocarpus there are three resin ducts under vascular bundle of midrib,mesophyll cells are differentiated into palisade tissue and sponge tissue;in leaves of Nageia,there is only one resin duct under vascular bundle in each vein and no obvious differentiation in mesophyll cells,palisade tissue can be found on both sides,and sclereids can also be found in mesophyll tissue.The anatomical differences of leaf veins and mesophylls between Nageia and Podocarpus mentioned above support the viewpoint that Nageia and Podocarpus are two independent genera. 展开更多
关键词 Nageia PODOCARPUS LEAF conducting TISSUE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部