Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be f...Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be fabricated bymetallic additive manufacturing technique,such as selective laser melting(SLM).However,the maximum dimensions of actual structures are usually in a sub-meter scale,which results in restrictions on their appliance in aerospace and other fields.In this work,a meter-scale thin-walled structure with lattice infill is designed for the fuel tank supporting component of the satellite by integrating a self-supporting lattice into the thickness optimization of the thin-wall.The designed structure is fabricated by SLM of AlSi10Mg and cold metal transfer welding technique.Quasi-static mechanical tests and vibration tests are both conducted to verify the mechanical strength of the designed large-scale lattice thin-walled structure.The experimental results indicate that themeter-scale thin-walled structure with lattice infill could meet the dimension and lightweight requirements of most spacecrafts.展开更多
A numerical model of wave force upon continuous cylinder structures with a large diameter using the boundary element method (BEM) is presented. A numerical model of reflecting wave upon continuous cylinders was establ...A numerical model of wave force upon continuous cylinder structures with a large diameter using the boundary element method (BEM) is presented. A numerical model of reflecting wave upon continuous cylinders was established on the basis of linear wave theory.The fundamental solution to the Helmholtz equation within an infinite strip area that explicitly satisfies two infinite parallel boundaries is used together with Radiation condition rather than the solution of an infinite area.According to the proposed theory and method,the computer programs have been composed in Visual C ++ Development Studio.Several examples show that the technique and its program are feasible and efficient.And the wave forces upon continuous cylinders can be decreased by as much as 14%~24% under a ratio of D/L= 0.09~0.19 compared with the square caissons.展开更多
A method of coupled BEM-FEM analysis for the elastic spatial structure system is presented. It can be applied to the calculation of the stress and deformation of the large-diamater cylinder structure system and it is ...A method of coupled BEM-FEM analysis for the elastic spatial structure system is presented. It can be applied to the calculation of the stress and deformation of the large-diamater cylinder structure system and it is suitable for symmetric or non-symmetric structures under the distributed or concentrated load. Numerical examples show that the proposed method and computer program BEFEM are quite efficient in the analysis of the large-diameter cylinder structure problems in ocean engineering.展开更多
The large cylinder is a new-type structure that has been applied to harbor and offshore engineering. An analytic method of the relationship between loads and the structure displacement is developed based on the failur...The large cylinder is a new-type structure that has been applied to harbor and offshore engineering. An analytic method of the relationship between loads and the structure displacement is developed based on the failure mode of deep embedded large cylinder structures. It can be used to calculate directly the soil resistance and the ultimate bearing capacity of the structure under usage. A new criterion of the large cylinder structure, which discriminates the deep embedded cylinder from the shallow embedded cylinder, is defined. Model tests prove that the proposed method is feasible for the analysis of deep embedded large cylinder structures.展开更多
In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-B...In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-BP hybrid algorithm was presented by uniting respective applicability of back-propagation artificial neural network (BP-ANN) and genetic algorithm (GA). The detailed process was as follows. Firstly, the GA trained the best weights and thresholds as the initial values of BP-ANN to initialize the neural network. Then, the BP-ANN after initialization was trained until the errors converged to the required precision. Finally, the network model, which met the requirements after being examined by the test samples, was applied to energy-absorption forecast of thin-walled cylindrical structure impacting. After example analysis, the GA-BP network model was trained until getting the desired network error only by 46 steps, while the single BP-ANN model achieved the same network error by 992 steps, which obviously shows that the GA-BP hybrid algorithm has faster convergence rate. The average relative forecast error (ARE) of the SEA predictive results obtained by GA-BP hybrid algorithm is 1.543%, while the ARE of the SEA predictive results obtained by BP-ANN is 2.950%, which clearly indicates that the forecast precision of the GA-BP hybrid algorithm is higher than that of the BP-ANN.展开更多
The solidified structure of the thin-walled and complicated Ti-6AI-4V castings produced by the vertical centrifugal casting process was studied in the present work. The results show that the wall thickness of the sect...The solidified structure of the thin-walled and complicated Ti-6AI-4V castings produced by the vertical centrifugal casting process was studied in the present work. The results show that the wall thickness of the section is featured with homogeneously distributed fine equiaxial grains, compared with the microstructure of the thick-walled section. The grain size of the castings has a tendency to decrease gradually with the increasing of the centrifugal radius. The inter-lamellar space in thick-walled casting parts is bigger than that of the thin-walled parts, and the profile of inter-lamellar space is not susceptible to the centrifugal radius.展开更多
The dynamic characteristics of hydraulic self servo swing cylinder were analyzed according to the hydraulic system natural frequency formula. Based on that,a method of the hydraulic self servo swing cylinder structure...The dynamic characteristics of hydraulic self servo swing cylinder were analyzed according to the hydraulic system natural frequency formula. Based on that,a method of the hydraulic self servo swing cylinder structure optimization based on genetic algorithm was proposed in this paper. By analyzing the four parameters that affect the dynamic characteristics, we had to optimize the structure to obtain as larger the Dm( displacement) as possible under the condition with the purpose of improving the dynamic characteristics of hydraulic self servo swing cylinder. So three state equations were established in this paper. The paper analyzed the effect of the four parameters in hydraulic self servo swing cylinder natural frequency equation and used the genetic algorithm to obtain the optimal solution of structure parameters. The model was simulated by substituting the parameters and initial value to the simulink model. Simulation results show that: using self servo hydraulic swing cylinder natural frequency equation to study its dynamic response characteristics is very effective.Compared with no optimization,the overall system dynamic response speed is significantly improved.展开更多
This paper develops a new numerical framework for modeⅢcrack problems of thin-walled structures by integrating multiple advanced techniques in the boundary element literature.The details of special crack-tip elements...This paper develops a new numerical framework for modeⅢcrack problems of thin-walled structures by integrating multiple advanced techniques in the boundary element literature.The details of special crack-tip elements for displacement and stress are derived.An exponential transformation technique is introduced to accurately calculate the nearly singular integral,which is the key task of the boundary element simulation of thin-walled structures.Three numerical experiments with different types of cracks are provided to verify the performance of the present numerical framework.Numerical results demonstrate that the present scheme is valid for modeⅢcrack problems of thin-walled structures with the thickness-to-length ratio in the microscale,even nanoscale,regime.展开更多
Theoretical description of the wave propagation in an elliptical cylinder multilayer structure under the conditions of H polarization and E polarization is presented. A transfer matrix method has been developed for el...Theoretical description of the wave propagation in an elliptical cylinder multilayer structure under the conditions of H polarization and E polarization is presented. A transfer matrix method has been developed for elliptical cylinder waves. The formulas of reflection and transmission coefficients for an elliptical cylinder multilayer structure are driven. Reflection and transmission coefficients of elliptical cylinder waves by a single elliptical cylinder interface is presented. The obtained formulas can be generalized to the cold plasma filled structures and thus the obtained results in the limit of circular cylinder structures are investigated.展开更多
In the structural design of the high pier,in order to analyze the strength and structure stability,the pier was often considered a thin-walled structure.Elastoplastic incremental theory was used to establish the model...In the structural design of the high pier,in order to analyze the strength and structure stability,the pier was often considered a thin-walled structure.Elastoplastic incremental theory was used to establish the model of elastoplastic stability of high pier.By considering the combined action of pile,soil and pier together,the destabilization bearing capacity was calculated by using 3-D finite element method(3-D FEM) for piers with different pile and section height.Meanwhile,the equivalent stress in different sections of pier was computed and the processor of destabilization was discussed.When the pier is lower,the bearing capacity under mutual effect of pile,soil and pier is less than the situation when mutual effect is not considered;when the pier is higher,their differences are not conspicuous.Along with the increase of the cross-sectional height,the direction of destabilization bearing capacity is varied and the ultimate capacity is buildup.The results of a stability analysis example are almost identical with the practice.展开更多
Goal based and limit state design is nowadays a well-established approach in many engineering fields.Ship construction rules started introducing such concepts since early 2000.However,classification societies’rules d...Goal based and limit state design is nowadays a well-established approach in many engineering fields.Ship construction rules started introducing such concepts since early 2000.However,classification societies’rules do not provide hints on how to verify limit states and to determine the structural layout of submerged thin-walled stiffened cylinders,whose most prominent examples are submarines.Rather,they generally offer guidance and prescriptive formulations to assess shell plating and stiffening members.Such marine structures are studied,designed and built up to carry payloads below the sea surface.In the concept-design stage,the maximum operating depth is the governing hull scantling parameter.Main dimensions are determined based on the analysis of operational requirements.This study proposes a practical conceptdesign approach for conceptual submarine design,aimed at obtaining hull structures that maximize the payload capacity in terms of available internal volume by suitably adjusting structural layout and stiffening members’scantling,duly accounting for robustness and construction constraints as well as practical fabrication issues.The proposed scantling process highlights that there is no need of complex algorithms if sound engineering judgment is applied in setting down rationally the hull scantling problem.A systematic approach based on a computer-coded procedure developed on purpose was effectively implemented and satisfactorily applied in design practice.展开更多
The dynamic stiffness method is introduced to analyze thin-walled structures including thin-walled straight beams and spatial twisted helix beam. A dynamic stiffness matrix is formed by using frequency dependent shape...The dynamic stiffness method is introduced to analyze thin-walled structures including thin-walled straight beams and spatial twisted helix beam. A dynamic stiffness matrix is formed by using frequency dependent shape functions which are exact solutions of the governing differential equations. With the obtained thin-walled beam dynamic stiffness matrices, the thin-walled frame dynamic stiffness matrix can also be formulated by satisfying the required displacements compatibility and forces equilib-rium, a method which is similar to the finite element method (FEM). Then the thin-walled structure natural frequencies can be found by equating the determinant of the system dynamic stiffness matrix to zero. By this way, just one element and several elements can exactly predict many modes of a thin-walled beam and a spatial thin-walled frame, respectively. Several cases are studied and the results are compared with the existing solutions of other methods. The natural frequencies and buckling loads of these thin-walled structures are computed.展开更多
The application of continuous natural fibers as reinforcement in composite thin-walled structures offers a feasible approach to achieve light weight and high strength while remaining environmentally friendly.In additi...The application of continuous natural fibers as reinforcement in composite thin-walled structures offers a feasible approach to achieve light weight and high strength while remaining environmentally friendly.In addition,additive manufacturing technology provides a favorable process foundation for its realization.In this study,the printability and energy absorption properties of 3D printed continuous fiber reinforced thin-walled structures with different configurations were investigated.The results suggested that a low printing speed and a proper layer thickness would mitigate the printing defects within the structures.The printing geometry accuracy of the structures could be further improved by rounding the sharp corners with appropriate radii.This study successfully fabricated structures with vari-ous configurations characterized by high geometric accuracy through printing parameters optimization and path smoothing.Moreover,the compressive property and energy absorption characteristics of the structures under quasi-static axial compression were evaluated and compared.It was found that all studied thin-walled structures exhibited progressive folding deformation patterns during compression.In particular,energy absorption process was achieved through the combined damage modes of plastic deformation,fiber pullout and delamination.Furthermore,the com-parison results showed that the hexagonal structure exhibited the best energy absorption performance.The study revealed the structure-mechanical property relationship of 3D printed continuous fiber reinforced composite thin-walled structures through the analysis of multiscale failure characteristics and load response,which is valuable for broadening their applications.展开更多
This paper re-evaluates recently published quasi-static tests on laser-welded thin-walled steel structures in order to discuss the fundamental challenges in collision simulations based on finite element analysis.Clamp...This paper re-evaluates recently published quasi-static tests on laser-welded thin-walled steel structures in order to discuss the fundamental challenges in collision simulations based on finite element analysis.Clamped square panels were considered,with spherical indenter positioned at the mid-span of the stiffeners and moved along this centerline in order to change the load-carrying mechanism of the panels.Furthermore,the use of panels with single-sided flat bar stiffening and web-core sandwich panels enabled the investigation of the effect of structural topology on structural behavior and strength.The changes in loading position and panel topology resulted in different loading,structural and material gradients.In web-core panels,these three gradients occur at the same locations making the panel global responses sensitive for statistical variations and the failure process time-dependent.In stiffened panel with reduced structural gradient,this sensitivity and time-dependency in failure process is not observed.These observations set challenges to numerical simulations due to spatial and temporal discretization as well as the observed microrotation,which is beyond the currently used assumptions of classical continuum mechanics.Therefore,finally,we discuss the potential of non-classical continuum mechanics as remedy to deal with these phenomena and provide a base for necessary development for future.展开更多
A method of localization is proposed to lower the high order of equations in FEM calcula- tion for the stability of a complex thin-walled structure.The localized analysis enables us to obtain both the upper and lower ...A method of localization is proposed to lower the high order of equations in FEM calcula- tion for the stability of a complex thin-walled structure.The localized analysis enables us to obtain both the upper and lower limits for the bifurcating point in a whole linear elastic structural system,as well as an ap- proximate solution to asymptotic post-buckling problem.Some numerical examples are included.展开更多
Bymeans of the local surface nanocrystallization that enables to change the material on local positions,an innovative embedded multi-cell(EMC)thin-walled energy absorption structures with local surface nanocrystalliza...Bymeans of the local surface nanocrystallization that enables to change the material on local positions,an innovative embedded multi-cell(EMC)thin-walled energy absorption structures with local surface nanocrystallization is proposed in this paper.The local surface nanacrystallization stripes are regarded as the moving morphable components in the domain for optimal design.Results reveal that after optimizing the local surface nanocrystallization layout,the specific energy absorption(SEA)is increased by 50.78%compared with the untreated counterpart.Besides,in contrast with the optimized 4-cell structure,the SEA of the nanocrystallized embedded 9-cell structure is further enhanced by 27.68%,in contrast with the 9-cell structure,the SEA of the nanocrystallized embedded clapboard type 9-cell structure is enhanced by 3.61%.Thismethod provides a guidance for the design of newenergy absorption devices.展开更多
Molecular dynamics method is used to study the conformation behavior of a semi-flexible polymer chain confined in a cylinder channel.A novel helix-like structure is found to form during the simulation.Moreover,the det...Molecular dynamics method is used to study the conformation behavior of a semi-flexible polymer chain confined in a cylinder channel.A novel helix-like structure is found to form during the simulation.Moreover,the detailed characteristic parameters and formation probability of these helix-like structures under moderate conditions are investigated.We find that the structure is not a perfect helix,but a bundle of elliptical turns.In addition,we conduct a statistical analysis for the chain monomer distribution along the radial direction.This research contributes to our understanding of the microscopic conformation of polymer chains in confined environments filled with a solvent.展开更多
Using finite element method,influence of diesel cylinder head structure on fatigue strength is investigated.A simplified head model with function characteristics is built for thermal-mechanical simulation.From the sim...Using finite element method,influence of diesel cylinder head structure on fatigue strength is investigated.A simplified head model with function characteristics is built for thermal-mechanical simulation.From the simulation results,the influence of valve bridge structure and roof transition fillet dimension on fatigue strength are obtained.And a new valve bridge structure which can effectively improve the fatigue life is proposed.展开更多
Hydraulic equipment is widely applied in the fields of engineering construction, manufacture and mining. As the core component of hydraulic equipment, hydraulic cylinder will directly affect the whole operation of hyd...Hydraulic equipment is widely applied in the fields of engineering construction, manufacture and mining. As the core component of hydraulic equipment, hydraulic cylinder will directly affect the whole operation of hydraulic equipment. This paper will analyze the improvement of hydraulic cylinder structure and expect to enhance its reliability and stability.展开更多
This paper transforms combined loads, applied at an arbitrary point of a thin-walled open section beam, to the shear centre of the cross-section of the beam. Therein, a generalized transformation matrix for loads with...This paper transforms combined loads, applied at an arbitrary point of a thin-walled open section beam, to the shear centre of the cross-section of the beam. Therein, a generalized transformation matrix for loads with respect to the shear centre is derived, this accounting for the bimoments that develop due to the way the combined loads are applied. This and the authors’ earlier paper (World Journal of Mechanics 2021, 11, 205-236) provide a full solution to the theory of thin-walled, open-section structures bearing combined loading. The earlier work identified arbitrary loading with the section’s area properties that are necessary to axial and shear stress calculations within the structure’s thin walls. In the previous paper attention is paid to the relevant axes of loading and to the transformations of loading required between axes for stress calculations arising from tension/compression, bending, torsion and shear. The derivation of the general transformation matrix applies to all types of loadings including, axial tensile and compression forces, transverse shear, longitudinal bending. One application, representing all these load cases, is given of a simple channel cantilever with an eccentrically located end load.展开更多
基金The authors are grateful for the support by National Key Research and Development Program of China(2021YFF0500300,2020YFB1708300)the National Natural Science Foundation of China(52205280,12172041).
文摘Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be fabricated bymetallic additive manufacturing technique,such as selective laser melting(SLM).However,the maximum dimensions of actual structures are usually in a sub-meter scale,which results in restrictions on their appliance in aerospace and other fields.In this work,a meter-scale thin-walled structure with lattice infill is designed for the fuel tank supporting component of the satellite by integrating a self-supporting lattice into the thickness optimization of the thin-wall.The designed structure is fabricated by SLM of AlSi10Mg and cold metal transfer welding technique.Quasi-static mechanical tests and vibration tests are both conducted to verify the mechanical strength of the designed large-scale lattice thin-walled structure.The experimental results indicate that themeter-scale thin-walled structure with lattice infill could meet the dimension and lightweight requirements of most spacecrafts.
基金Supported by National Natural Science Foundation of China(No.5990 90 0 5) National High Performance Computing Foundation of
文摘A numerical model of wave force upon continuous cylinder structures with a large diameter using the boundary element method (BEM) is presented. A numerical model of reflecting wave upon continuous cylinders was established on the basis of linear wave theory.The fundamental solution to the Helmholtz equation within an infinite strip area that explicitly satisfies two infinite parallel boundaries is used together with Radiation condition rather than the solution of an infinite area.According to the proposed theory and method,the computer programs have been composed in Visual C ++ Development Studio.Several examples show that the technique and its program are feasible and efficient.And the wave forces upon continuous cylinders can be decreased by as much as 14%~24% under a ratio of D/L= 0.09~0.19 compared with the square caissons.
文摘A method of coupled BEM-FEM analysis for the elastic spatial structure system is presented. It can be applied to the calculation of the stress and deformation of the large-diamater cylinder structure system and it is suitable for symmetric or non-symmetric structures under the distributed or concentrated load. Numerical examples show that the proposed method and computer program BEFEM are quite efficient in the analysis of the large-diameter cylinder structure problems in ocean engineering.
文摘The large cylinder is a new-type structure that has been applied to harbor and offshore engineering. An analytic method of the relationship between loads and the structure displacement is developed based on the failure mode of deep embedded large cylinder structures. It can be used to calculate directly the soil resistance and the ultimate bearing capacity of the structure under usage. A new criterion of the large cylinder structure, which discriminates the deep embedded cylinder from the shallow embedded cylinder, is defined. Model tests prove that the proposed method is feasible for the analysis of deep embedded large cylinder structures.
基金Project(50175110) supported by the National Natural Science Foundation of ChinaProject(2009bsxt019) supported by the Graduate Degree Thesis Innovation Foundation of Central South University, China
文摘In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-BP hybrid algorithm was presented by uniting respective applicability of back-propagation artificial neural network (BP-ANN) and genetic algorithm (GA). The detailed process was as follows. Firstly, the GA trained the best weights and thresholds as the initial values of BP-ANN to initialize the neural network. Then, the BP-ANN after initialization was trained until the errors converged to the required precision. Finally, the network model, which met the requirements after being examined by the test samples, was applied to energy-absorption forecast of thin-walled cylindrical structure impacting. After example analysis, the GA-BP network model was trained until getting the desired network error only by 46 steps, while the single BP-ANN model achieved the same network error by 992 steps, which obviously shows that the GA-BP hybrid algorithm has faster convergence rate. The average relative forecast error (ARE) of the SEA predictive results obtained by GA-BP hybrid algorithm is 1.543%, while the ARE of the SEA predictive results obtained by BP-ANN is 2.950%, which clearly indicates that the forecast precision of the GA-BP hybrid algorithm is higher than that of the BP-ANN.
基金by the National Natural Science Foundation of China under grant No. 50775050the State Key Laboratory of Solidif ication Processing in NWPU (200702)
文摘The solidified structure of the thin-walled and complicated Ti-6AI-4V castings produced by the vertical centrifugal casting process was studied in the present work. The results show that the wall thickness of the section is featured with homogeneously distributed fine equiaxial grains, compared with the microstructure of the thick-walled section. The grain size of the castings has a tendency to decrease gradually with the increasing of the centrifugal radius. The inter-lamellar space in thick-walled casting parts is bigger than that of the thin-walled parts, and the profile of inter-lamellar space is not susceptible to the centrifugal radius.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61105086)Self-Planned Task of State Key Laboratory of Robotics and System(HIT)(Grant No.SKLRS-2010-MS-12)Hubei Province Natural Science Foundation(Grant No.2010CDB0 3405)
文摘The dynamic characteristics of hydraulic self servo swing cylinder were analyzed according to the hydraulic system natural frequency formula. Based on that,a method of the hydraulic self servo swing cylinder structure optimization based on genetic algorithm was proposed in this paper. By analyzing the four parameters that affect the dynamic characteristics, we had to optimize the structure to obtain as larger the Dm( displacement) as possible under the condition with the purpose of improving the dynamic characteristics of hydraulic self servo swing cylinder. So three state equations were established in this paper. The paper analyzed the effect of the four parameters in hydraulic self servo swing cylinder natural frequency equation and used the genetic algorithm to obtain the optimal solution of structure parameters. The model was simulated by substituting the parameters and initial value to the simulink model. Simulation results show that: using self servo hydraulic swing cylinder natural frequency equation to study its dynamic response characteristics is very effective.Compared with no optimization,the overall system dynamic response speed is significantly improved.
基金supported by the National Natural Science Foundation of China(No.11802165)the China Postdoctoral Science Foundation(Grant No.2019M650158).
文摘This paper develops a new numerical framework for modeⅢcrack problems of thin-walled structures by integrating multiple advanced techniques in the boundary element literature.The details of special crack-tip elements for displacement and stress are derived.An exponential transformation technique is introduced to accurately calculate the nearly singular integral,which is the key task of the boundary element simulation of thin-walled structures.Three numerical experiments with different types of cracks are provided to verify the performance of the present numerical framework.Numerical results demonstrate that the present scheme is valid for modeⅢcrack problems of thin-walled structures with the thickness-to-length ratio in the microscale,even nanoscale,regime.
文摘Theoretical description of the wave propagation in an elliptical cylinder multilayer structure under the conditions of H polarization and E polarization is presented. A transfer matrix method has been developed for elliptical cylinder waves. The formulas of reflection and transmission coefficients for an elliptical cylinder multilayer structure are driven. Reflection and transmission coefficients of elliptical cylinder waves by a single elliptical cylinder interface is presented. The obtained formulas can be generalized to the cold plasma filled structures and thus the obtained results in the limit of circular cylinder structures are investigated.
基金Project(06JJ5080) supported by the Hunan Natural Science Foundation of ChinaProject(05026B) supported by the Young Science Foundation of Central South University of Forestry and Technology
文摘In the structural design of the high pier,in order to analyze the strength and structure stability,the pier was often considered a thin-walled structure.Elastoplastic incremental theory was used to establish the model of elastoplastic stability of high pier.By considering the combined action of pile,soil and pier together,the destabilization bearing capacity was calculated by using 3-D finite element method(3-D FEM) for piers with different pile and section height.Meanwhile,the equivalent stress in different sections of pier was computed and the processor of destabilization was discussed.When the pier is lower,the bearing capacity under mutual effect of pile,soil and pier is less than the situation when mutual effect is not considered;when the pier is higher,their differences are not conspicuous.Along with the increase of the cross-sectional height,the direction of destabilization bearing capacity is varied and the ultimate capacity is buildup.The results of a stability analysis example are almost identical with the practice.
基金Supported by the Italian Ministry of Defense-Segredifesa,in collaboration with Fincantieri under Grant of the ASAMS(Aspetti specialistici e approccio metodologico per progettazione di sottomarini di ultima generazione)project(2019-2022).
文摘Goal based and limit state design is nowadays a well-established approach in many engineering fields.Ship construction rules started introducing such concepts since early 2000.However,classification societies’rules do not provide hints on how to verify limit states and to determine the structural layout of submerged thin-walled stiffened cylinders,whose most prominent examples are submarines.Rather,they generally offer guidance and prescriptive formulations to assess shell plating and stiffening members.Such marine structures are studied,designed and built up to carry payloads below the sea surface.In the concept-design stage,the maximum operating depth is the governing hull scantling parameter.Main dimensions are determined based on the analysis of operational requirements.This study proposes a practical conceptdesign approach for conceptual submarine design,aimed at obtaining hull structures that maximize the payload capacity in terms of available internal volume by suitably adjusting structural layout and stiffening members’scantling,duly accounting for robustness and construction constraints as well as practical fabrication issues.The proposed scantling process highlights that there is no need of complex algorithms if sound engineering judgment is applied in setting down rationally the hull scantling problem.A systematic approach based on a computer-coded procedure developed on purpose was effectively implemented and satisfactorily applied in design practice.
基金Project (No. 9040831) supported by the Hong Kong Research GrantCouncil, China
文摘The dynamic stiffness method is introduced to analyze thin-walled structures including thin-walled straight beams and spatial twisted helix beam. A dynamic stiffness matrix is formed by using frequency dependent shape functions which are exact solutions of the governing differential equations. With the obtained thin-walled beam dynamic stiffness matrices, the thin-walled frame dynamic stiffness matrix can also be formulated by satisfying the required displacements compatibility and forces equilib-rium, a method which is similar to the finite element method (FEM). Then the thin-walled structure natural frequencies can be found by equating the determinant of the system dynamic stiffness matrix to zero. By this way, just one element and several elements can exactly predict many modes of a thin-walled beam and a spatial thin-walled frame, respectively. Several cases are studied and the results are compared with the existing solutions of other methods. The natural frequencies and buckling loads of these thin-walled structures are computed.
基金Supported by National Natural Science Foundation of China(Grant Nos.51905555,52105523)Hu-Xiang Youth Talent Program of China(Grant No.2020RC3009)Innovation-Driven Project of Central South University of China(Grant No.2019CX017).
文摘The application of continuous natural fibers as reinforcement in composite thin-walled structures offers a feasible approach to achieve light weight and high strength while remaining environmentally friendly.In addition,additive manufacturing technology provides a favorable process foundation for its realization.In this study,the printability and energy absorption properties of 3D printed continuous fiber reinforced thin-walled structures with different configurations were investigated.The results suggested that a low printing speed and a proper layer thickness would mitigate the printing defects within the structures.The printing geometry accuracy of the structures could be further improved by rounding the sharp corners with appropriate radii.This study successfully fabricated structures with vari-ous configurations characterized by high geometric accuracy through printing parameters optimization and path smoothing.Moreover,the compressive property and energy absorption characteristics of the structures under quasi-static axial compression were evaluated and compared.It was found that all studied thin-walled structures exhibited progressive folding deformation patterns during compression.In particular,energy absorption process was achieved through the combined damage modes of plastic deformation,fiber pullout and delamination.Furthermore,the com-parison results showed that the hexagonal structure exhibited the best energy absorption performance.The study revealed the structure-mechanical property relationship of 3D printed continuous fiber reinforced composite thin-walled structures through the analysis of multiscale failure characteristics and load response,which is valuable for broadening their applications.
基金The experimental program would not have been possible without the funding by the 100-Year Foundation of the Federation of Finnish Technology Industries and the Scientific Advisory Board for Defense.The analyses were carried out in project called Ultra Lightweight and Fracture Resistant Thin-Walled Structures through Optimization of Strain Paths,by the Academy of Finland(310828).This work was also supported by the Estonian Research Council grant PSG526.
文摘This paper re-evaluates recently published quasi-static tests on laser-welded thin-walled steel structures in order to discuss the fundamental challenges in collision simulations based on finite element analysis.Clamped square panels were considered,with spherical indenter positioned at the mid-span of the stiffeners and moved along this centerline in order to change the load-carrying mechanism of the panels.Furthermore,the use of panels with single-sided flat bar stiffening and web-core sandwich panels enabled the investigation of the effect of structural topology on structural behavior and strength.The changes in loading position and panel topology resulted in different loading,structural and material gradients.In web-core panels,these three gradients occur at the same locations making the panel global responses sensitive for statistical variations and the failure process time-dependent.In stiffened panel with reduced structural gradient,this sensitivity and time-dependency in failure process is not observed.These observations set challenges to numerical simulations due to spatial and temporal discretization as well as the observed microrotation,which is beyond the currently used assumptions of classical continuum mechanics.Therefore,finally,we discuss the potential of non-classical continuum mechanics as remedy to deal with these phenomena and provide a base for necessary development for future.
基金Project supported by National Natural Science Foundation of China
文摘A method of localization is proposed to lower the high order of equations in FEM calcula- tion for the stability of a complex thin-walled structure.The localized analysis enables us to obtain both the upper and lower limits for the bifurcating point in a whole linear elastic structural system,as well as an ap- proximate solution to asymptotic post-buckling problem.Some numerical examples are included.
基金Dalian Innovation Foundation of Science and Technology(2018J11CY005)State Key Laboratory of Structural Analysis for Industrial Equipment(S18313)are gratefully acknowledged.
文摘Bymeans of the local surface nanocrystallization that enables to change the material on local positions,an innovative embedded multi-cell(EMC)thin-walled energy absorption structures with local surface nanocrystallization is proposed in this paper.The local surface nanacrystallization stripes are regarded as the moving morphable components in the domain for optimal design.Results reveal that after optimizing the local surface nanocrystallization layout,the specific energy absorption(SEA)is increased by 50.78%compared with the untreated counterpart.Besides,in contrast with the optimized 4-cell structure,the SEA of the nanocrystallized embedded 9-cell structure is further enhanced by 27.68%,in contrast with the 9-cell structure,the SEA of the nanocrystallized embedded clapboard type 9-cell structure is enhanced by 3.61%.Thismethod provides a guidance for the design of newenergy absorption devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11504033 and 11404290)the General Research Fund of Hong Kong Research Council of China(Grant No.15301014)
文摘Molecular dynamics method is used to study the conformation behavior of a semi-flexible polymer chain confined in a cylinder channel.A novel helix-like structure is found to form during the simulation.Moreover,the detailed characteristic parameters and formation probability of these helix-like structures under moderate conditions are investigated.We find that the structure is not a perfect helix,but a bundle of elliptical turns.In addition,we conduct a statistical analysis for the chain monomer distribution along the radial direction.This research contributes to our understanding of the microscopic conformation of polymer chains in confined environments filled with a solvent.
基金Supported by the National Basic Research Program of China(613570303)
文摘Using finite element method,influence of diesel cylinder head structure on fatigue strength is investigated.A simplified head model with function characteristics is built for thermal-mechanical simulation.From the simulation results,the influence of valve bridge structure and roof transition fillet dimension on fatigue strength are obtained.And a new valve bridge structure which can effectively improve the fatigue life is proposed.
文摘Hydraulic equipment is widely applied in the fields of engineering construction, manufacture and mining. As the core component of hydraulic equipment, hydraulic cylinder will directly affect the whole operation of hydraulic equipment. This paper will analyze the improvement of hydraulic cylinder structure and expect to enhance its reliability and stability.
文摘This paper transforms combined loads, applied at an arbitrary point of a thin-walled open section beam, to the shear centre of the cross-section of the beam. Therein, a generalized transformation matrix for loads with respect to the shear centre is derived, this accounting for the bimoments that develop due to the way the combined loads are applied. This and the authors’ earlier paper (World Journal of Mechanics 2021, 11, 205-236) provide a full solution to the theory of thin-walled, open-section structures bearing combined loading. The earlier work identified arbitrary loading with the section’s area properties that are necessary to axial and shear stress calculations within the structure’s thin walls. In the previous paper attention is paid to the relevant axes of loading and to the transformations of loading required between axes for stress calculations arising from tension/compression, bending, torsion and shear. The derivation of the general transformation matrix applies to all types of loadings including, axial tensile and compression forces, transverse shear, longitudinal bending. One application, representing all these load cases, is given of a simple channel cantilever with an eccentrically located end load.