In order to study the effects of the process parameters on springback and section deformation, a sensitivity analysis model was established based on the combination use of the multi-parameter sensitivity analysis meth...In order to study the effects of the process parameters on springback and section deformation, a sensitivity analysis model was established based on the combination use of the multi-parameter sensitivity analysis method and the springback/section deformation prediction finite element model, and by using this model the sensitivities of the springback and the section deformation to process parameters were analyzed and compared. The results show that the most sensitive process conditions for springback angle are the boost speed and the pressure of pressure die, and the most sensitive process condition for section deformation is the number of cores. When the clamp force, the boost speed and the pressure of pressure die are utilized to control section deformation, the effect of these process parameters on springback should be considered. When the process parameters are mainly used to control springback, the effect of these process parameters on the section deformation should be always considered.展开更多
In order to investigate the energy absorption characteristics of multi-cell polygonal tubes with different cross-sectional configurations,firstly,the theoretical formulae of the mean crushing force under axial load fo...In order to investigate the energy absorption characteristics of multi-cell polygonal tubes with different cross-sectional configurations,firstly,the theoretical formulae of the mean crushing force under axial load for four multi-cell polygonal tubes were derived by combining the Super Folding Element theory with Zhang’s research results.These formulae can be used to validate the numerical model and quickly evaluate the energy absorption ability of multi-cell polygonal tubes.Furthermore,a comparative study on the energy absorption performance of eight multi-cell polygonal tubes under axial and oblique loads was conducted.The results show that all tubes have a stable mixed deformation mode under axial load.The multi-cell decagon tube has better energy-absorption ability compared with other tubes.Whenθis less than 10°,all the tubes maintain a stable deformation mode,and the multi-cell decagon tube also has the biggest crushing force efficiency and specific energy absorption among these eight tubes;meanwhile compared with the results atθ=0°,the specific energy absorption of all tubes decreases by about 8%-21%,while the crushing force efficiency increases by 20%-56%.However,at large angles 20°and 30°,all of the tubes collapse in bending modes and lose their effectiveness at energy absorption.展开更多
基金Project (50975235) supported by the National Natural Science Foundation of ChinaProject (B08040) supported by the 111 Project
文摘In order to study the effects of the process parameters on springback and section deformation, a sensitivity analysis model was established based on the combination use of the multi-parameter sensitivity analysis method and the springback/section deformation prediction finite element model, and by using this model the sensitivities of the springback and the section deformation to process parameters were analyzed and compared. The results show that the most sensitive process conditions for springback angle are the boost speed and the pressure of pressure die, and the most sensitive process condition for section deformation is the number of cores. When the clamp force, the boost speed and the pressure of pressure die are utilized to control section deformation, the effect of these process parameters on springback should be considered. When the process parameters are mainly used to control springback, the effect of these process parameters on the section deformation should be always considered.
基金Projects(U1334208,51405516,51275532)supported by the National Natural Science Foundation of ChinaProjects(2015zzts210,2016zzts331)supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to investigate the energy absorption characteristics of multi-cell polygonal tubes with different cross-sectional configurations,firstly,the theoretical formulae of the mean crushing force under axial load for four multi-cell polygonal tubes were derived by combining the Super Folding Element theory with Zhang’s research results.These formulae can be used to validate the numerical model and quickly evaluate the energy absorption ability of multi-cell polygonal tubes.Furthermore,a comparative study on the energy absorption performance of eight multi-cell polygonal tubes under axial and oblique loads was conducted.The results show that all tubes have a stable mixed deformation mode under axial load.The multi-cell decagon tube has better energy-absorption ability compared with other tubes.Whenθis less than 10°,all the tubes maintain a stable deformation mode,and the multi-cell decagon tube also has the biggest crushing force efficiency and specific energy absorption among these eight tubes;meanwhile compared with the results atθ=0°,the specific energy absorption of all tubes decreases by about 8%-21%,while the crushing force efficiency increases by 20%-56%.However,at large angles 20°and 30°,all of the tubes collapse in bending modes and lose their effectiveness at energy absorption.