BACKGROUND 3,6-dichlorobenzo[b]thiophene-2-carboxylic acid(BT2)is a benzothiophene carboxylate derivative that can suppress the catabolism of branched-chain amino acid(BCAA)-associated mammalian target of rapamycin co...BACKGROUND 3,6-dichlorobenzo[b]thiophene-2-carboxylic acid(BT2)is a benzothiophene carboxylate derivative that can suppress the catabolism of branched-chain amino acid(BCAA)-associated mammalian target of rapamycin complex 1(mTORC1)activation.Previous studies have demonstrated the therapeutic effects of BT2 on arthritis,liver cancer,and kidney injury.However,the effects of BT2 on ulcerative colitis(UC)are unknown.AIM To investigate the anti-UC effects of BT2 and the underlying mechanism.METHODS Mouse UC models were created through the administration of 3.5%dextran sodium sulfate(DSS)for 7 d.The mice in the treated groups were administered salazosulfapyridine(300 mg/kg)or BT2(20 mg/kg)orally from day 1 to day 7.At the end of the study,all of the mice were sacrificed,and colon tissues were removed for hematoxylin and eosin staining,immunoblot analyses,and immunohistochemical assays.Cytokine levels were measured by flow cytometry.The contents of BCAAs including valine,leucine,and isoleucine,in mouse serum were detected by liquid chromatography-tandem mass spectrometry,and the abundance of intestinal flora was analyzed by 16S ribosomal DNA sequencing.RESULTS Our results revealed that BT2 significantly ameliorated the inflammatory symptoms and pathological damage induced by DSS in mice.BT2 also reduced the production of the proinflammatory cytokines interleukin 6(IL-6),IL-9,and IL-2 and increased the anti-inflammatory cytokine IL-10 level.In addition,BT2 notably improved BCAA catabolism and suppressed mTORC1 activation and cyclooxygenase-2 expression in the colon tissues of UC mice.Furthermore,highthroughput sequencing revealed that BT2 restored the gut microbial abundance and diversity in mice with colitis.Compared with the DSS group,BT2 treatment increased the ratio of Firmicutes to Bacteroidetes and decreased the abundance of Enterobacteriaceae and Escherichia-Shigella.CONCLUSION Our results indicated that BT2 significantly ameliorated DSS-induced UC and that the latent mechanism involved the suppression of BCAA-associated mTORC1 activation and modulation of the intestinal flora.展开更多
Solvothermal reactions of Ca(NO), Sr(NO)with thiophene-2,5-dicarboxylic in DMF afforded two new inorganic-organic hybrid frameworks, [M(TDC)(DMF)]n(M = Ca(1), Sr(2), TDC = thiophene-2,5-dicarboxylic, DMF = N,N?-dimeth...Solvothermal reactions of Ca(NO), Sr(NO)with thiophene-2,5-dicarboxylic in DMF afforded two new inorganic-organic hybrid frameworks, [M(TDC)(DMF)]n(M = Ca(1), Sr(2), TDC = thiophene-2,5-dicarboxylic, DMF = N,N?-dimethylformamide), which have been characterized by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analysis and IR spectra. Both compounds feature three-dimensional(3D) frameworks based on the versatile coordinated modes(μ-η~2:η~2, μ-η~2:η~1, μ-η~2:η~1) of carboxylic groups in tdc ligands. C–H···S hydrogen bonds and C–H···π interactions contribute to the stabilization of the structures. They exhibit weaker packing force compared with their literature isomers. Consequently, blue and blue/green luminescence of two compounds has been observed. Their luminescence mechanism can be ascribed to ligand-to-metal charge transfer(LMCT) compared with the ligand-centered luminescence in their isomers. Electronic structural calculations illustrate that under the condition of weaker packing forces, larger gaps can be achieved, which facilitate the LMCT. This work suggests that the introduction of S-heteroatom can result in more electrons rich in the metal centers, thus giving rise to metal-involved luminescence.展开更多
Photochemical reactions of poly(3-butoxythiophene-2,5-diyl) with chloroform under irradiation with light were studied. The reactions were separately carried out under air, oxygen, and nitrogen. The obtained results sh...Photochemical reactions of poly(3-butoxythiophene-2,5-diyl) with chloroform under irradiation with light were studied. The reactions were separately carried out under air, oxygen, and nitrogen. The obtained results showed that this reaction belongs to the pseudo-first-order reaction with a rate constant kobs of 1.4×10?5 s?1 at room temperature. The presence or absence of air, oxygen, and nitrogen did not have obvious effects on the reaction rate under irradiation with light.展开更多
芝麻是八大类食物过敏原之一,快速准确识别芝麻过敏原对预防其过敏有重要意义。核酸适配体可以高效识别靶标过敏原,在过敏原检测中有良好的应用前景。为了获得芝麻主要过敏原Ses i 2的特异性核酸适体,本研究以Ses i 2为靶标,通过磁珠筛...芝麻是八大类食物过敏原之一,快速准确识别芝麻过敏原对预防其过敏有重要意义。核酸适配体可以高效识别靶标过敏原,在过敏原检测中有良好的应用前景。为了获得芝麻主要过敏原Ses i 2的特异性核酸适体,本研究以Ses i 2为靶标,通过磁珠筛选法(磁珠-SELEX)开展10轮筛选,经由高通量测序获得6条候补序列(S1~S6),并进行家族性、同源性分析及二级结构预测。结果表明,6条候选核酸适体的重复率可达46.38%,其自由能在-9.02到-2.47 kcal·moL^(-1)之间,根据自由能能量稳定原则,S1和S5吉布斯自由能最低最稳定,分别为-6.70和-9.02 kcal·moL^(-1)。利用ELISA试验进行亲和力测试,结果表明核酸适体S1和S2的亲和能力较强,S1:KD=67.02 nmol·L^(-1),R2=0.925 8,S2:KD=97.65 nmol·L^(-1),R2=0.795 1。核酸适体S1与过敏原Ses i 2的结合力和其他过敏原蛋白相比有显著差异,可视为具有特异性。本研究最终获得一条兼具良好亲和力和特异性的核酸适体S1,为芝麻过敏原快速检测提供了技术支撑。展开更多
基金Supported by National Natural Science Foundation of ChinaNo. 82074241+1 种基金Project of Jiangsu Province Hospital of Traditional Chinese Medicine Peak TalentNo. y2021rc36
文摘BACKGROUND 3,6-dichlorobenzo[b]thiophene-2-carboxylic acid(BT2)is a benzothiophene carboxylate derivative that can suppress the catabolism of branched-chain amino acid(BCAA)-associated mammalian target of rapamycin complex 1(mTORC1)activation.Previous studies have demonstrated the therapeutic effects of BT2 on arthritis,liver cancer,and kidney injury.However,the effects of BT2 on ulcerative colitis(UC)are unknown.AIM To investigate the anti-UC effects of BT2 and the underlying mechanism.METHODS Mouse UC models were created through the administration of 3.5%dextran sodium sulfate(DSS)for 7 d.The mice in the treated groups were administered salazosulfapyridine(300 mg/kg)or BT2(20 mg/kg)orally from day 1 to day 7.At the end of the study,all of the mice were sacrificed,and colon tissues were removed for hematoxylin and eosin staining,immunoblot analyses,and immunohistochemical assays.Cytokine levels were measured by flow cytometry.The contents of BCAAs including valine,leucine,and isoleucine,in mouse serum were detected by liquid chromatography-tandem mass spectrometry,and the abundance of intestinal flora was analyzed by 16S ribosomal DNA sequencing.RESULTS Our results revealed that BT2 significantly ameliorated the inflammatory symptoms and pathological damage induced by DSS in mice.BT2 also reduced the production of the proinflammatory cytokines interleukin 6(IL-6),IL-9,and IL-2 and increased the anti-inflammatory cytokine IL-10 level.In addition,BT2 notably improved BCAA catabolism and suppressed mTORC1 activation and cyclooxygenase-2 expression in the colon tissues of UC mice.Furthermore,highthroughput sequencing revealed that BT2 restored the gut microbial abundance and diversity in mice with colitis.Compared with the DSS group,BT2 treatment increased the ratio of Firmicutes to Bacteroidetes and decreased the abundance of Enterobacteriaceae and Escherichia-Shigella.CONCLUSION Our results indicated that BT2 significantly ameliorated DSS-induced UC and that the latent mechanism involved the suppression of BCAA-associated mTORC1 activation and modulation of the intestinal flora.
基金supported by the Science and Technology Funding Project of Fujian Provincial Department of Transportation(No.201337)
文摘Solvothermal reactions of Ca(NO), Sr(NO)with thiophene-2,5-dicarboxylic in DMF afforded two new inorganic-organic hybrid frameworks, [M(TDC)(DMF)]n(M = Ca(1), Sr(2), TDC = thiophene-2,5-dicarboxylic, DMF = N,N?-dimethylformamide), which have been characterized by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analysis and IR spectra. Both compounds feature three-dimensional(3D) frameworks based on the versatile coordinated modes(μ-η~2:η~2, μ-η~2:η~1, μ-η~2:η~1) of carboxylic groups in tdc ligands. C–H···S hydrogen bonds and C–H···π interactions contribute to the stabilization of the structures. They exhibit weaker packing force compared with their literature isomers. Consequently, blue and blue/green luminescence of two compounds has been observed. Their luminescence mechanism can be ascribed to ligand-to-metal charge transfer(LMCT) compared with the ligand-centered luminescence in their isomers. Electronic structural calculations illustrate that under the condition of weaker packing forces, larger gaps can be achieved, which facilitate the LMCT. This work suggests that the introduction of S-heteroatom can result in more electrons rich in the metal centers, thus giving rise to metal-involved luminescence.
文摘Photochemical reactions of poly(3-butoxythiophene-2,5-diyl) with chloroform under irradiation with light were studied. The reactions were separately carried out under air, oxygen, and nitrogen. The obtained results showed that this reaction belongs to the pseudo-first-order reaction with a rate constant kobs of 1.4×10?5 s?1 at room temperature. The presence or absence of air, oxygen, and nitrogen did not have obvious effects on the reaction rate under irradiation with light.
文摘芝麻是八大类食物过敏原之一,快速准确识别芝麻过敏原对预防其过敏有重要意义。核酸适配体可以高效识别靶标过敏原,在过敏原检测中有良好的应用前景。为了获得芝麻主要过敏原Ses i 2的特异性核酸适体,本研究以Ses i 2为靶标,通过磁珠筛选法(磁珠-SELEX)开展10轮筛选,经由高通量测序获得6条候补序列(S1~S6),并进行家族性、同源性分析及二级结构预测。结果表明,6条候选核酸适体的重复率可达46.38%,其自由能在-9.02到-2.47 kcal·moL^(-1)之间,根据自由能能量稳定原则,S1和S5吉布斯自由能最低最稳定,分别为-6.70和-9.02 kcal·moL^(-1)。利用ELISA试验进行亲和力测试,结果表明核酸适体S1和S2的亲和能力较强,S1:KD=67.02 nmol·L^(-1),R2=0.925 8,S2:KD=97.65 nmol·L^(-1),R2=0.795 1。核酸适体S1与过敏原Ses i 2的结合力和其他过敏原蛋白相比有显著差异,可视为具有特异性。本研究最终获得一条兼具良好亲和力和特异性的核酸适体S1,为芝麻过敏原快速检测提供了技术支撑。