Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs...Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.展开更多
A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces...A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces. The global displacement components are of the Reddy theory and local components are of the internal first to third-order terms in each layer. A two-node beam element based on this theory is proposed. The solutions are compared with 3D-elasticity solutions. Numerical results show that present beam element has higher computational efficiency and higher accuracy.展开更多
arman-type nonlinear large deflection equations are derived occnrding to theReddy's higher-order shear deformation plate theory and used in the thermal postbuckling analysis The effects of initial geometric imperf...arman-type nonlinear large deflection equations are derived occnrding to theReddy's higher-order shear deformation plate theory and used in the thermal postbuckling analysis The effects of initial geometric imperfections of the plate areincluded in the present study which also includes th thermal effects.Simply supported,symmetric cross-ply laminated plates subjected to uniform or nomuniform parabolictemperature distribution are considered. The analysis uses a mixed GalerkinGolerkinperlurbation technique to determine thermal buckling louds and postbucklingequilibrium paths.The effects played by transverse shear deformation plate aspeclraio, total number of plies thermal load ratio and initial geometric imperfections arealso studied.展开更多
The paper presents an approach for the formulation of general laminated shells based on a third order shear deformation theory. These shells undergo finite (unlimited in size) rotations and large overall motions but w...The paper presents an approach for the formulation of general laminated shells based on a third order shear deformation theory. These shells undergo finite (unlimited in size) rotations and large overall motions but with small strains. A singularity-free parametrization of the rotation field is adopted. The constitutive equations, derived with respect to laminate curvilinear coordinates, are applicable to shell elements with an arbitrary number of orthotropic layers and where the material principal axes can vary from layer to layer. A careful consideration of the consistent linearization procedure pertinent to the proposed parametrization of finite rotations leads to symmetric tangent stiffness matrices. The matrix formulation adopted here makes it possible to implement the present formulation within the framework of the finite element method as a straightforward task.展开更多
A postbuckling analysis is presented for a shear deformable laminated cylindrical panel of finite length subjected to lateral pressure. The governing equations are based on Reddy's higher order shear deformation...A postbuckling analysis is presented for a shear deformable laminated cylindrical panel of finite length subjected to lateral pressure. The governing equations are based on Reddy's higher order shear deformation shell theory with von Krmn_Donnell_type of kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the panel are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of shear deformable laminated cylindrical panels under lateral pressure. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of perfect and imperfect, moderately thick, cross_ply laminated cylindrical panels. The effects played by transverse shear deformation, panel geometric parameters, total number of plies, fiber orientation, and initial geometric imperfections are studied.展开更多
A new displacement based higher order element has been formulated that is ideally suitable for shear deformable composite and sandwich plates. Suitable functions for displacements and rotations for each node have been...A new displacement based higher order element has been formulated that is ideally suitable for shear deformable composite and sandwich plates. Suitable functions for displacements and rotations for each node have been selected so that the element shows rapid convergence, an excellent response against transverse shear loading and requires no shear correction factors. It is completely lock-free and behaves extremely well for thin to thick plates. To make the element rapidly convergent and to capture warping effects for composites, higher order displacement terms in the displacement kinematics have been considered for each node. The element has eleven degrees of freedom per node. Shear deformation has also been considered in the formulation by taking into account shear strains ( rxz and ryz) as nodal unknowns. The element is very simple to formulate and could be coded up in research software. A small Fortran code has been developed to implement the element and various examples of isotropic and composite plates have been analyzed to show the effectiveness of the element.展开更多
文摘Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.
基金The project supported by the National Natural Science Foundation of China(10172023)
文摘A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces. The global displacement components are of the Reddy theory and local components are of the internal first to third-order terms in each layer. A two-node beam element based on this theory is proposed. The solutions are compared with 3D-elasticity solutions. Numerical results show that present beam element has higher computational efficiency and higher accuracy.
文摘arman-type nonlinear large deflection equations are derived occnrding to theReddy's higher-order shear deformation plate theory and used in the thermal postbuckling analysis The effects of initial geometric imperfections of the plate areincluded in the present study which also includes th thermal effects.Simply supported,symmetric cross-ply laminated plates subjected to uniform or nomuniform parabolictemperature distribution are considered. The analysis uses a mixed GalerkinGolerkinperlurbation technique to determine thermal buckling louds and postbucklingequilibrium paths.The effects played by transverse shear deformation plate aspeclraio, total number of plies thermal load ratio and initial geometric imperfections arealso studied.
文摘The paper presents an approach for the formulation of general laminated shells based on a third order shear deformation theory. These shells undergo finite (unlimited in size) rotations and large overall motions but with small strains. A singularity-free parametrization of the rotation field is adopted. The constitutive equations, derived with respect to laminate curvilinear coordinates, are applicable to shell elements with an arbitrary number of orthotropic layers and where the material principal axes can vary from layer to layer. A careful consideration of the consistent linearization procedure pertinent to the proposed parametrization of finite rotations leads to symmetric tangent stiffness matrices. The matrix formulation adopted here makes it possible to implement the present formulation within the framework of the finite element method as a straightforward task.
文摘A postbuckling analysis is presented for a shear deformable laminated cylindrical panel of finite length subjected to lateral pressure. The governing equations are based on Reddy's higher order shear deformation shell theory with von Krmn_Donnell_type of kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the panel are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of shear deformable laminated cylindrical panels under lateral pressure. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of perfect and imperfect, moderately thick, cross_ply laminated cylindrical panels. The effects played by transverse shear deformation, panel geometric parameters, total number of plies, fiber orientation, and initial geometric imperfections are studied.
文摘A new displacement based higher order element has been formulated that is ideally suitable for shear deformable composite and sandwich plates. Suitable functions for displacements and rotations for each node have been selected so that the element shows rapid convergence, an excellent response against transverse shear loading and requires no shear correction factors. It is completely lock-free and behaves extremely well for thin to thick plates. To make the element rapidly convergent and to capture warping effects for composites, higher order displacement terms in the displacement kinematics have been considered for each node. The element has eleven degrees of freedom per node. Shear deformation has also been considered in the formulation by taking into account shear strains ( rxz and ryz) as nodal unknowns. The element is very simple to formulate and could be coded up in research software. A small Fortran code has been developed to implement the element and various examples of isotropic and composite plates have been analyzed to show the effectiveness of the element.