Ground Penetrating Radar (GPR) is one of the non-invasive techniques commonly used to identify “anomalies” in the ground. It has been proven very effective in different fields ranging from the location of pipes and ...Ground Penetrating Radar (GPR) is one of the non-invasive techniques commonly used to identify “anomalies” in the ground. It has been proven very effective in different fields ranging from the location of pipes and other underground services to the identification of archaeological sites. After the 1994 Kwun Lung Lau accident in Hong Kong, the Government has been commissioning the feasibility of different geophysics techniques to identify any issues related to engineering slopes and retaining walls. Among the different techniques tested during phase I, Electrical Imaging (EI) and Ground Penetrating Radar (GPR) were the most applicable in the study of old masonry walls. This paper aims to stress the importance of using the appropriate frequencies during the GPR survey of engineering slopes. In order to do that, two independent contractors who used different frequencies to carry out the GPR survey on the same area will be compared.展开更多
It is important to evaluate and monitor the environmental impacts by the activity in our hand with appropriate methods, and the geophysical techniques have often been used in the subsurface environmental monitoring an...It is important to evaluate and monitor the environmental impacts by the activity in our hand with appropriate methods, and the geophysical techniques have often been used in the subsurface environmental monitoring and remediation processes. In the study an electromagnetic survey (EM) is performed to delineate deeply the extent of contamination at an industrial abandoned site, to detect the spread of groundwater and soil contamination, to locate possible pathways of leachate plumes. Based on the analysis of the geophysical anomaly of electrical conductivity, the survey area is delineated into three zones: original zone, transitional zone and contaminated zone. It was inferred that the high conductivity zones correspond to the contaminated zones of groundwater and soil. The survey demonstrates that EM method has the ability to measure small changes in subsurface properties involving ground water and is sensitive to the conductive layers. The measurement shows the behavior of groundwater and soil contamination and the position of groundwater pipelines, and it is beneficial to help waste management processes and to determine possible locations of monitoring wells so as to monitor the environment in the survey area in the future.展开更多
A ground magnetic survey was carried out to investigate the presence of iron ore at a location (Lat. 7.99883°N to Lat. 7.99933°N, Long. 3.57900°E to Long. 3.57990°E) in Iseyin, Oyo State, South-wes...A ground magnetic survey was carried out to investigate the presence of iron ore at a location (Lat. 7.99883°N to Lat. 7.99933°N, Long. 3.57900°E to Long. 3.57990°E) in Iseyin, Oyo State, South-western Nigeria. Ten magnetic traverses each 100 m long at a separation of 5 m were run West-East. Magnetic intensity was taken at intervals of 10 m along each traverse line using the proton precession magnetometer (G-856 AX). The measured magnetic field data were corrected for drift and were presented as profiles. The profiles were interpreted by calculating the depth to the top of anomalies. The data obtained were used to construct magnetic anomaly maps in 2D and 3D. The magnetic survey results delineated this location into some high and low magnetic field intensity regions. The regions of high magnetic field anomaly indicated the presence of materials with high susceptibility which was suspected to be iron compounds. The quantitative and qualitative analyses on interpretations of field data collected were given, while these results provided values for the total component measurements of ground magnetic anomaly that widely ranged between a maximum positive peak result of 8 nT and to a minimum negative peak result of —6 nT. Using Peter’s half slope technique, depth to the basement was assessed, which actually provided a maximum depth to basement of 6.25 m. From the knowledge of the geology of the area and also, the magnetic survey employed information, therefore, we can finally conclude that, the study area is under laid by geologic structures which favour the accumulation of iron-ore minerals deposit at Oke-Aro area in Iseyin.展开更多
The paper presents the results of a ground penetrating radar (GPR) application for the detection of ground ice. We com- bined a reflection traveltime curves analysis with a frequency spectrogram analysis. We found s...The paper presents the results of a ground penetrating radar (GPR) application for the detection of ground ice. We com- bined a reflection traveltime curves analysis with a frequency spectrogram analysis. We found special anomalies at specific traces in the traveltime curves and ground boundaries analysis, and obtained a ground model for subsurface structure which allows the ground ice layer to be identified and delineated.展开更多
To obtain a detailed model of the three-dimensional ground structure, the microtoremor and gravity surveys were carried out around Kurikoma area, Japan, where is the source reagion of 2008 Iwate-Miyagi nairiku earthqu...To obtain a detailed model of the three-dimensional ground structure, the microtoremor and gravity surveys were carried out around Kurikoma area, Japan, where is the source reagion of 2008 Iwate-Miyagi nairiku earthquake and is located about 90 km north of Sendai. Using the microtremor data, velocity structures of shallow sediments are estimated and the results at some of the sites are reported preliminarily. We could not find the detailed velocity structure to bedrock, because small arrays for the microtremor observation were applied, However, significant structures are observed for shallow velocity structure at some sites. Furthermore, gravity data provided Bouguer anomaly, which is one of gravity anomalies, around the target area. From the Bouguer anomaly, area with low anomaly is tbund around the south-eastern area of the fault plane.展开更多
Wazuka town in Kyoto prefecture has the largest farmland for Uji green tea on the steep hillsides. In 1953, this area suffered from flood disaster due to the heavy rainfall along with the valley wind. In this area, di...Wazuka town in Kyoto prefecture has the largest farmland for Uji green tea on the steep hillsides. In 1953, this area suffered from flood disaster due to the heavy rainfall along with the valley wind. In this area, diluvia, Osaka strata and granite are outcropped along the Wazuka fault, and many old landslides in small scale could be identified. The River Basin Control Bureau has an experimental site locating on Ishidera area in Wazuka, where there was a house that was built about 150 years ago, and the habitants migrated after the 1953 flood. This area was developed for lots and housing during the economic bubble years around 1990, but was abandoned due to the occurrence of a small landslide and the inclination of concrete wall. To understand the distribution of ground water streams, 1 m-depth-ground temperature survey method and sound survey method were used. Using these methods, ground water streams were detected at the Kizu river bank gate site, at salt pan site gate trail, and on Ishidera landslide observatory. Based on the survey results, the construction sites of the wells for the drainage, steel-sheet piles for the river bank and watergate trails for the salt field area were suggested.展开更多
Ground penetrating radar (GPR) surveys have being applied to investigate very near-surface stratification of sedimentary units in coastal plains and to define their depositional conditions. This paper presents, howeve...Ground penetrating radar (GPR) surveys have being applied to investigate very near-surface stratification of sedimentary units in coastal plains and to define their depositional conditions. This paper presents, however, low-frequency GPR survey to investigate fault-related depositional systems at greater depths. The Quinta-Cassino area in the Rio Grande do Sul Coastal Plain (RGSCP, Brazil) shows a wide strandplain that is made off by very long, continuous, and linear geomorphic features (beach ridges). This strandplain extends for ~70 km southward. The beach ridges show low-angle truncations against the Quinta escarpment, and also truncations in the strandplain. The traditional approach points that RGSCP was developed by juxtaposition of four lagoons/barrier systems as consequence of sea level changes;previous model assumes that no deformational episode occurred in RGSCP. The geophysical and geological surveys carried out in this area showed the existence of listric fault controlling the beach ridges in the escarpments and hanging-wall blocks. The radargrams could distinguish Pleistocene basement unit anticlockwise rotation, thickening of beach ridges radarfacies close to listric normal faults, and horst structures. These deformational features indicate that the extensional zone of a large-scale gravity-driven structure controlled the mechanical subsidence, the Holocene sedimentation and its stratigraphic and geomorphic features in the Quinta-Cassino area to build up an asymmetric delta. The results point to a new approach in dealing with RGSCP Holocene evolution.展开更多
The construction of modern livable cities faces challenges in karst areas,including ground collapse and engineering problems.Wuhan,with a population of 13.74×10^(6) and approximately 1161 km^(2)of soluble rocks i...The construction of modern livable cities faces challenges in karst areas,including ground collapse and engineering problems.Wuhan,with a population of 13.74×10^(6) and approximately 1161 km^(2)of soluble rocks in the urban area of 8569.15 km^(2),predominantly consists of concealed karst areas where occasional ground collapse events occur,posing significant threats to underground engineering projects.To address these challenges,a comprehensive geological survey was conducted in Wuhan,focusing on major karstrelated issues.Geophysical methods offer advantages over drilling in detecting concealed karst areas due to their efficiency,non-destructiveness,and flexibility.This paper reviewed the karst geological characteristics in Wuhan and the geophysical exploration methods for karst,selected eight effective geophysical methods for field experimentation,evaluated their suitability,and proposed method combinations for different karst scenarios.The results show that different geophysical methods have varying applicability for karst detection in Wuhan,and combining multiple methods enhances detection effectiveness.The specific recommendations for method combinations provided in this study serve as a valuable reference for karst detection in Wuhan.展开更多
Combined with a digital bored photography system and in-situ statistics concerning the joints and fissures of both ore-body and surrounding rock,a 2D discrete model was constructed using UDEC.The stress field and disp...Combined with a digital bored photography system and in-situ statistics concerning the joints and fissures of both ore-body and surrounding rock,a 2D discrete model was constructed using UDEC.The stress field and displacement field changes of different sublevel stoping systems were also studied.Changes in the overlying rock strata settlement pattern has been analyzed and validated by in-situ monitoring data.The results show that:in the caving process,there exists an obvious delay and jump for the overlying rock strata displacement over time,and a stable arch can be formed in the process of caving,which leads to hidden goafs.Disturbed by the mining activity,a stress increase occurred in both the hanging wall and the foot wall,demonstrating a hump-shaped distribution pattern.From the comparison between simulation results and in-situ monitoring results,land subsidence shows a slow-development,suddenfailure,slow-development cycle pattern,which leads eventually to a stable state.This pattern validates the existence of balanced arch and hidden goafs.展开更多
Based on the latest high-precision aeromagnetic data,an aeromagnetic anomaly zone is identified at Zhangsanying--Tongshanzi in northern Hebei Province.By the potential field conversion processing,including the reducti...Based on the latest high-precision aeromagnetic data,an aeromagnetic anomaly zone is identified at Zhangsanying--Tongshanzi in northern Hebei Province.By the potential field conversion processing,including the reduction to the pole,vertical derivative,upward continuation and residual anomaly,the authors analyzed the characteristics of three typical aeromagnetic anomalies in Zhangsanying--Tongshanzi aeromagnetic anomaly zone and their geological origin.The methods include the forward and inversion methods,such as 2.5D optimization fitting and Euler deconvolution.Moreover,combined with the geological outcrop,known iron deposits,ground magnetic survey and verification,the authors studied the relationship between the aeromagnetic anomalies and iron deposits.The result shows that the Zhangsanying--Tongshanzi aeromagnetic anomaly zone is composed of 10 large magnetic anomalies with high amplitude and clear boundary.The aeromagnetic anomalies are comparable and intrinsically related to the ground magnetic anomalies and IP anomalies,indicating that the anomalies are caused by magnetite deposits.It has good magnetite prospecting potential in the Zhangsanying--Tongshanzi aeromagnetic anomaly zone.展开更多
The goal of this study was to map rainfed and irrigated rice-fallow cropland areas across South Asia,using MODIS 250 m time-series data and identify where the farming system may be intensified by the inclusion of a sh...The goal of this study was to map rainfed and irrigated rice-fallow cropland areas across South Asia,using MODIS 250 m time-series data and identify where the farming system may be intensified by the inclusion of a short-season crop during the fallow period.Rice-fallow cropland areas are those areas where rice is grown during the kharif growing season(June–October),followed by a fallow during the rabi season(November–February).These cropland areas are not suitable for growing rabi-season rice due to their high water needs,but are suitable for a short-season(≤3 months),low water-consuming grain legumes such as chickpea(Cicer arietinum L.),black gram,green gram,and lentils.Intensification(double-cropping)in this manner can improve smallholder farmer’s incomes and soil health via rich nitrogen-fixation legume crops as well as address food security challenges of ballooning populations without having to expand croplands.Several grain legumes,primarily chickpea,are increasingly grown across Asia as a source of income for smallholder farmers and at the same time providing rich and cheap source of protein that can improve the nutritional quality of diets in the region.The suitability of rainfed and irrigated rice-fallow croplands for grain legume cultivation across South Asia were defined by these identifiers:(a)rice crop is grown during the primary(kharif)crop growing season or during the north-west monsoon season(June–October);(b)same croplands are left fallow during the second(rabi)season or during the south-east monsoon season(November–February);and(c)ability to support low water-consuming,short-growing season(≤3 months)grain legumes(chickpea,black gram,green gram,and lentils)during rabi season.Existing irrigated or rainfed crops such as rice or wheat that were grown during kharif were not considered suitable for growing during the rabi season,because the moisture/water demand of these crops is too high.The study established cropland classes based on the every 16-day 250 m normalized difference vegetation index(NDVI)time series for one year(June 2010–May 2011)of Moderate Resolution Imaging Spectroradiometer(MODIS)data,using spectral matching techniques(SMTs),and extensive field knowledge.Map accuracy was evaluated based on independent ground survey data as well as compared with available sub-national level statistics.The producers’and users’accuracies of the cropland fallow classes were between 75%and 82%.The overall accuracy and the kappa coefficient estimated for rice classes were 82%and 0.79,respectively.The analysis estimated approximately 22.3 Mha of suitable rice-fallow areas in South Asia,with 88.3%in India,0.5%in Pakistan,1.1%in Sri Lanka,8.7%in Bangladesh,1.4%in Nepal,and 0.02%in Bhutan.Decision-makers can target these areas for sustainable intensification of short-duration grain legumes.展开更多
文摘Ground Penetrating Radar (GPR) is one of the non-invasive techniques commonly used to identify “anomalies” in the ground. It has been proven very effective in different fields ranging from the location of pipes and other underground services to the identification of archaeological sites. After the 1994 Kwun Lung Lau accident in Hong Kong, the Government has been commissioning the feasibility of different geophysics techniques to identify any issues related to engineering slopes and retaining walls. Among the different techniques tested during phase I, Electrical Imaging (EI) and Ground Penetrating Radar (GPR) were the most applicable in the study of old masonry walls. This paper aims to stress the importance of using the appropriate frequencies during the GPR survey of engineering slopes. In order to do that, two independent contractors who used different frequencies to carry out the GPR survey on the same area will be compared.
文摘It is important to evaluate and monitor the environmental impacts by the activity in our hand with appropriate methods, and the geophysical techniques have often been used in the subsurface environmental monitoring and remediation processes. In the study an electromagnetic survey (EM) is performed to delineate deeply the extent of contamination at an industrial abandoned site, to detect the spread of groundwater and soil contamination, to locate possible pathways of leachate plumes. Based on the analysis of the geophysical anomaly of electrical conductivity, the survey area is delineated into three zones: original zone, transitional zone and contaminated zone. It was inferred that the high conductivity zones correspond to the contaminated zones of groundwater and soil. The survey demonstrates that EM method has the ability to measure small changes in subsurface properties involving ground water and is sensitive to the conductive layers. The measurement shows the behavior of groundwater and soil contamination and the position of groundwater pipelines, and it is beneficial to help waste management processes and to determine possible locations of monitoring wells so as to monitor the environment in the survey area in the future.
文摘A ground magnetic survey was carried out to investigate the presence of iron ore at a location (Lat. 7.99883°N to Lat. 7.99933°N, Long. 3.57900°E to Long. 3.57990°E) in Iseyin, Oyo State, South-western Nigeria. Ten magnetic traverses each 100 m long at a separation of 5 m were run West-East. Magnetic intensity was taken at intervals of 10 m along each traverse line using the proton precession magnetometer (G-856 AX). The measured magnetic field data were corrected for drift and were presented as profiles. The profiles were interpreted by calculating the depth to the top of anomalies. The data obtained were used to construct magnetic anomaly maps in 2D and 3D. The magnetic survey results delineated this location into some high and low magnetic field intensity regions. The regions of high magnetic field anomaly indicated the presence of materials with high susceptibility which was suspected to be iron compounds. The quantitative and qualitative analyses on interpretations of field data collected were given, while these results provided values for the total component measurements of ground magnetic anomaly that widely ranged between a maximum positive peak result of 8 nT and to a minimum negative peak result of —6 nT. Using Peter’s half slope technique, depth to the basement was assessed, which actually provided a maximum depth to basement of 6.25 m. From the knowledge of the geology of the area and also, the magnetic survey employed information, therefore, we can finally conclude that, the study area is under laid by geologic structures which favour the accumulation of iron-ore minerals deposit at Oke-Aro area in Iseyin.
文摘The paper presents the results of a ground penetrating radar (GPR) application for the detection of ground ice. We com- bined a reflection traveltime curves analysis with a frequency spectrogram analysis. We found special anomalies at specific traces in the traveltime curves and ground boundaries analysis, and obtained a ground model for subsurface structure which allows the ground ice layer to be identified and delineated.
文摘To obtain a detailed model of the three-dimensional ground structure, the microtoremor and gravity surveys were carried out around Kurikoma area, Japan, where is the source reagion of 2008 Iwate-Miyagi nairiku earthquake and is located about 90 km north of Sendai. Using the microtremor data, velocity structures of shallow sediments are estimated and the results at some of the sites are reported preliminarily. We could not find the detailed velocity structure to bedrock, because small arrays for the microtremor observation were applied, However, significant structures are observed for shallow velocity structure at some sites. Furthermore, gravity data provided Bouguer anomaly, which is one of gravity anomalies, around the target area. From the Bouguer anomaly, area with low anomaly is tbund around the south-eastern area of the fault plane.
文摘Wazuka town in Kyoto prefecture has the largest farmland for Uji green tea on the steep hillsides. In 1953, this area suffered from flood disaster due to the heavy rainfall along with the valley wind. In this area, diluvia, Osaka strata and granite are outcropped along the Wazuka fault, and many old landslides in small scale could be identified. The River Basin Control Bureau has an experimental site locating on Ishidera area in Wazuka, where there was a house that was built about 150 years ago, and the habitants migrated after the 1953 flood. This area was developed for lots and housing during the economic bubble years around 1990, but was abandoned due to the occurrence of a small landslide and the inclination of concrete wall. To understand the distribution of ground water streams, 1 m-depth-ground temperature survey method and sound survey method were used. Using these methods, ground water streams were detected at the Kizu river bank gate site, at salt pan site gate trail, and on Ishidera landslide observatory. Based on the survey results, the construction sites of the wells for the drainage, steel-sheet piles for the river bank and watergate trails for the salt field area were suggested.
文摘Ground penetrating radar (GPR) surveys have being applied to investigate very near-surface stratification of sedimentary units in coastal plains and to define their depositional conditions. This paper presents, however, low-frequency GPR survey to investigate fault-related depositional systems at greater depths. The Quinta-Cassino area in the Rio Grande do Sul Coastal Plain (RGSCP, Brazil) shows a wide strandplain that is made off by very long, continuous, and linear geomorphic features (beach ridges). This strandplain extends for ~70 km southward. The beach ridges show low-angle truncations against the Quinta escarpment, and also truncations in the strandplain. The traditional approach points that RGSCP was developed by juxtaposition of four lagoons/barrier systems as consequence of sea level changes;previous model assumes that no deformational episode occurred in RGSCP. The geophysical and geological surveys carried out in this area showed the existence of listric fault controlling the beach ridges in the escarpments and hanging-wall blocks. The radargrams could distinguish Pleistocene basement unit anticlockwise rotation, thickening of beach ridges radarfacies close to listric normal faults, and horst structures. These deformational features indicate that the extensional zone of a large-scale gravity-driven structure controlled the mechanical subsidence, the Holocene sedimentation and its stratigraphic and geomorphic features in the Quinta-Cassino area to build up an asymmetric delta. The results point to a new approach in dealing with RGSCP Holocene evolution.
基金jointly supported by the project of Chinese National Natural Science Foundation(42107485)National Key R&D Program(2020YFC1512400,2018YFC800804)China Geological Survey(DD20190282,DD20221734,and DD20230323)。
文摘The construction of modern livable cities faces challenges in karst areas,including ground collapse and engineering problems.Wuhan,with a population of 13.74×10^(6) and approximately 1161 km^(2)of soluble rocks in the urban area of 8569.15 km^(2),predominantly consists of concealed karst areas where occasional ground collapse events occur,posing significant threats to underground engineering projects.To address these challenges,a comprehensive geological survey was conducted in Wuhan,focusing on major karstrelated issues.Geophysical methods offer advantages over drilling in detecting concealed karst areas due to their efficiency,non-destructiveness,and flexibility.This paper reviewed the karst geological characteristics in Wuhan and the geophysical exploration methods for karst,selected eight effective geophysical methods for field experimentation,evaluated their suitability,and proposed method combinations for different karst scenarios.The results show that different geophysical methods have varying applicability for karst detection in Wuhan,and combining multiple methods enhances detection effectiveness.The specific recommendations for method combinations provided in this study serve as a valuable reference for karst detection in Wuhan.
基金financially supported by the National Natural Science Foundation of China(No.51374033)the Doctoral Program of Higher Education Research Fund(No.20120006110022)the Chenchao Iron Mine and the technical support of Itasca
文摘Combined with a digital bored photography system and in-situ statistics concerning the joints and fissures of both ore-body and surrounding rock,a 2D discrete model was constructed using UDEC.The stress field and displacement field changes of different sublevel stoping systems were also studied.Changes in the overlying rock strata settlement pattern has been analyzed and validated by in-situ monitoring data.The results show that:in the caving process,there exists an obvious delay and jump for the overlying rock strata displacement over time,and a stable arch can be formed in the process of caving,which leads to hidden goafs.Disturbed by the mining activity,a stress increase occurred in both the hanging wall and the foot wall,demonstrating a hump-shaped distribution pattern.From the comparison between simulation results and in-situ monitoring results,land subsidence shows a slow-development,suddenfailure,slow-development cycle pattern,which leads eventually to a stable state.This pattern validates the existence of balanced arch and hidden goafs.
基金Supported by Project of China Geological Survey(No.DD20190028)。
文摘Based on the latest high-precision aeromagnetic data,an aeromagnetic anomaly zone is identified at Zhangsanying--Tongshanzi in northern Hebei Province.By the potential field conversion processing,including the reduction to the pole,vertical derivative,upward continuation and residual anomaly,the authors analyzed the characteristics of three typical aeromagnetic anomalies in Zhangsanying--Tongshanzi aeromagnetic anomaly zone and their geological origin.The methods include the forward and inversion methods,such as 2.5D optimization fitting and Euler deconvolution.Moreover,combined with the geological outcrop,known iron deposits,ground magnetic survey and verification,the authors studied the relationship between the aeromagnetic anomalies and iron deposits.The result shows that the Zhangsanying--Tongshanzi aeromagnetic anomaly zone is composed of 10 large magnetic anomalies with high amplitude and clear boundary.The aeromagnetic anomalies are comparable and intrinsically related to the ground magnetic anomalies and IP anomalies,indicating that the anomalies are caused by magnetite deposits.It has good magnetite prospecting potential in the Zhangsanying--Tongshanzi aeromagnetic anomaly zone.
基金supported by two CGIAR Research Programs:Dryland Cereals,Grain legumes and WLE.The research was also supported by the global food security support analysis data at 30 m project(GFSAD30http://geography.wr.usgs.gov/science/croplands/https://croplands.org/)funded by the NASA MEaSUREs[grant number:NNH13AV82I](Making Earth System Data Records for Use in Research Environments)funding obtained through NASA ROSES solicitation as well as by the Land Change Science(LCS),Land Remote Sensing(LRS),and Climate Land Use Change Mission Area Programs of the U.S.Geological Survey(USGS).
文摘The goal of this study was to map rainfed and irrigated rice-fallow cropland areas across South Asia,using MODIS 250 m time-series data and identify where the farming system may be intensified by the inclusion of a short-season crop during the fallow period.Rice-fallow cropland areas are those areas where rice is grown during the kharif growing season(June–October),followed by a fallow during the rabi season(November–February).These cropland areas are not suitable for growing rabi-season rice due to their high water needs,but are suitable for a short-season(≤3 months),low water-consuming grain legumes such as chickpea(Cicer arietinum L.),black gram,green gram,and lentils.Intensification(double-cropping)in this manner can improve smallholder farmer’s incomes and soil health via rich nitrogen-fixation legume crops as well as address food security challenges of ballooning populations without having to expand croplands.Several grain legumes,primarily chickpea,are increasingly grown across Asia as a source of income for smallholder farmers and at the same time providing rich and cheap source of protein that can improve the nutritional quality of diets in the region.The suitability of rainfed and irrigated rice-fallow croplands for grain legume cultivation across South Asia were defined by these identifiers:(a)rice crop is grown during the primary(kharif)crop growing season or during the north-west monsoon season(June–October);(b)same croplands are left fallow during the second(rabi)season or during the south-east monsoon season(November–February);and(c)ability to support low water-consuming,short-growing season(≤3 months)grain legumes(chickpea,black gram,green gram,and lentils)during rabi season.Existing irrigated or rainfed crops such as rice or wheat that were grown during kharif were not considered suitable for growing during the rabi season,because the moisture/water demand of these crops is too high.The study established cropland classes based on the every 16-day 250 m normalized difference vegetation index(NDVI)time series for one year(June 2010–May 2011)of Moderate Resolution Imaging Spectroradiometer(MODIS)data,using spectral matching techniques(SMTs),and extensive field knowledge.Map accuracy was evaluated based on independent ground survey data as well as compared with available sub-national level statistics.The producers’and users’accuracies of the cropland fallow classes were between 75%and 82%.The overall accuracy and the kappa coefficient estimated for rice classes were 82%and 0.79,respectively.The analysis estimated approximately 22.3 Mha of suitable rice-fallow areas in South Asia,with 88.3%in India,0.5%in Pakistan,1.1%in Sri Lanka,8.7%in Bangladesh,1.4%in Nepal,and 0.02%in Bhutan.Decision-makers can target these areas for sustainable intensification of short-duration grain legumes.