期刊文献+
共找到4,087篇文章
< 1 2 205 >
每页显示 20 50 100
Resonantly enhanced second-and third-harmonic generation in dielectric nonlinear metasurfaces 被引量:1
1
作者 Ji Tong Wang Pavel Tonkaev +5 位作者 Kirill Koshelev Fangxing Lai Sergey Kruk Qinghai Song Yuri Kivshar Nicolae C.Panoiu 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第5期5-19,共15页
Nonlinear dielectric metasurfaces provide a promising approach to control and manipulate frequency conversion optical processes at the nanoscale,thus facilitating both advances in fundamental research and the developm... Nonlinear dielectric metasurfaces provide a promising approach to control and manipulate frequency conversion optical processes at the nanoscale,thus facilitating both advances in fundamental research and the development of new practical applications in photonics,lasing,and sensing.Here,we employ symmetry-broken metasurfaces made of centrosymmetric amorphous silicon for resonantly enhanced second-and third-order nonlinear optical response.Exploiting the rich physics of optical quasi-bound states in the continuum and guided mode resonances,we comprehensively study through rigorous numerical calculations the relative contribution of surface and bulk effects to second-harmonic generation(SHG)and the bulk contribution to third-harmonic generation(THG) from the meta-atoms.Next,we experimentally achieve optical resonances with high quality factors,which greatly boosts light-matter interaction,resulting in about 550 times SHG enhancement and nearly 5000-fold increase of THG.A good agreement between theoretical predictions and experimental measurements is observed.To gain deeper insights into the physics of the investigated nonlinear optical processes,we further numerically study the relation between nonlinear emission and the structural asymmetry of the metasurface and reveal that the generated harmonic signals arising from linear sharp resonances are highly dependent on the asymmetry of the meta-atoms.Our work suggests a fruitful strategy to enhance the harmonic generation and effectively control different orders of harmonics in all-dielectric metasurfaces,enabling the development of efficient active photonic nanodevices. 展开更多
关键词 second-harmonic generation third-harmonic generation bound state in the continuum guided mode resonance all-dielectric metasurfaces nonlinear optics
下载PDF
In vivo label-free measurement of blood flow velocity symmetry based on dual line scanning third-harmonic generation microscopy excited at the 1700 nm window 被引量:1
2
作者 Hui Cheng Jincheng Zhong +1 位作者 Ping Qiu Ke Wang 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第1期61-68,共8页
Measurement of bloodflow velocity is key to understanding physiology and pathology in vivo.While most measurements are performed at the middle of the blood vessel,little research has been done on characterizing the in... Measurement of bloodflow velocity is key to understanding physiology and pathology in vivo.While most measurements are performed at the middle of the blood vessel,little research has been done on characterizing the instantaneous bloodflow velocity distribution.This is mainly due to the lack of measurement technology with high spatial and temporal resolution.Here,we tackle this problem with our recently developed dual-wavelength line-scan third-harmonic generation(THG)imaging technology.Simultaneous acquisition of dual-wavelength THG line-scanning signals enables measurement of bloodflow velocities at two radially symmetric positions in both venules and arterioles in mouse brain in vivo.Our results clearly show that the instantaneous bloodflow velocity is not symmetric under general conditions. 展开更多
关键词 1700 nm-Window third-harmonic generation imaging blood flow velocity
下载PDF
Deep-skin third-harmonic generation(THG)imaging in vivo excited at the 2200 nm window 被引量:2
3
作者 Xinlin Chen Yi Pan +1 位作者 Ping Qiu Ke Wang 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2023年第4期58-65,共8页
The skin is heterogeneous and exerts strong scattering and aberration onto excitation light in multiphoton microscopy(MPM).Shifting to longer excitation wavelengths may help reduce skin scattering and aberration,poten... The skin is heterogeneous and exerts strong scattering and aberration onto excitation light in multiphoton microscopy(MPM).Shifting to longer excitation wavelengths may help reduce skin scattering and aberration,potentially enabling larger imaging depths.However,previous demonstrations of skin MPM employ excitation wavelengths only up to the 1700 nm window,leaving an open question as to whether longer excitation wavelengths are suitable for deep-skin MPM.Here,in order to explore the longer-wavelength territory,first,we demonstrate characterization of the broadband transmittance of excised mouse skin,revealing a high transmittance window at 2200nm.Then,we demonstrate third-harmonic generation(THG)imaging in mouse skin in vivo excited at this window.With 9mW optical power on the skin surface operating at 1MHz repetition rate,we can get THG signals of 250m below the skin surface.Comparative THG imaging excited at the 1700nm window shows that as imaging depth increases,THG signals decay even faster than those excited at 2200 nm.Our results thus uncover the 2200 nm window as a new,promising excitation window potential for deep-skin MPM. 展开更多
关键词 third-harmonic generation 2200 nm 1700 nm SKIN
下载PDF
Third-harmonic generation and imaging with resonant Si membrane metasurface 被引量:2
4
作者 Ze Zheng Lei Xu +9 位作者 Lujun Huang Daria Smirnova Khosro Zangeneh Kamali Arman Yousefi Fu Deng Rocio Camacho-Morales Cuifeng Ying Andrey E.Miroshnichenko Dragomir N.Neshev Mohsen Rahmani 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第8期18-27,共10页
Dielectric metasurfaces play an increasingly important role in enhancing optical nonlinear generations owing to their ability to support strong light-matter interactions based on Mie-type multipolar resonances.Compare... Dielectric metasurfaces play an increasingly important role in enhancing optical nonlinear generations owing to their ability to support strong light-matter interactions based on Mie-type multipolar resonances.Compared to metasurfaces composed of the periodic arrangement of nanoparticles,inverse,so-called,membrane metasurfaces offer unique possibilities for supporting multipolar resonances,while maintaining small unit cell size,large mode volume and high field enhancement for enhancing nonlinear frequency conversion.Here,we theoretically and experimentally investigate the formation of bound states in the continuum(BICs)from silicon dimer-hole membrane metasurfaces.We demonstrate that our BIC-formed resonance features a strong and tailorable electric near-field confinement inside the silicon membrane films.Furthermore,we show that by tuning the gap between the holes,one can open a leaky channel to transform these regular BICs into quasi-BICs,which can be excited directly under normal plane wave incidence.To prove the capabilities of such metasurfaces,we demonstrate the conversion of an infrared image to the visible range,based on the Third-harmonic generation(THG)process with the resonant membrane metasurfaces.Our results suggest a new paradigm for realising efficient nonlinear photonics metadevices and hold promise for extending the applications of nonlinear structuring surfaces to new types of all-optical near-infrared imaging technologies. 展开更多
关键词 nonlinear imaging third-harmonic generation bound states in the continuum membrane metasurfaces
下载PDF
Polaronic Electron-Phonon Interactions on the Third-Harmonic Generation in a Square Quantum Well 被引量:6
5
作者 LU Zhi-En GUO Kang-Xian 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第1期171-174,共4页
The influence of electron-phonon interactions on third-harmonic generation in a square quantum well is investigated. The first- and third-harmonic generation coefficient is obtained by using compact-density-matrix app... The influence of electron-phonon interactions on third-harmonic generation in a square quantum well is investigated. The first- and third-harmonic generation coefficient is obtained by using compact-density-matrix approach and iterative method, and the numerical results are presented for a GaAs square quantum well. The results show that the third-harmonic generation coefficient is obviously enhanced after considering the influence of electron-phonon interactions. 展开更多
关键词 electron-phonon interactions third-harmonic generation NONLINEARITY
下载PDF
Spectral modulation of third-harmonic generation by molecular alignment and preformed plasma 被引量:1
6
作者 李敏 李安原 +2 位作者 何泊衢 袁帅 曾和平 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第8期196-199,共4页
We demonstrate spectral modulation of third-harmonic generation from molecular alignment effects. The third harmonic spectrum is broadened or narrowed under different influences of cross-phase modulations originating ... We demonstrate spectral modulation of third-harmonic generation from molecular alignment effects. The third harmonic spectrum is broadened or narrowed under different influences of cross-phase modulations originating from various molecular alignment revivals. Furthermore, the spectrum and spatial distribution of the generated third harmonic pulse change dramatically in the presence of a preformed plasma. Under the influence of a preformed plasma, a narrower third harmonic spectrum is observed, and the conical third-harmonic pulse increases while the axial part decreases. The investigation provides an effective method to modulate the spectral characteristic and spatial distribution of third-harmonic generation from intense femtosecond filament. 展开更多
关键词 third-harmonic generation laser filament molecular alignment
下载PDF
Enhanced wide-angle third-harmonic generation in flat-band-engineered quasi-BIC metagratings
7
作者 Yijia Zang Ruoheng Chai +4 位作者 Wenwei Liu Zhancheng Li Hua Cheng Jianguo Tian Shuqi Chen 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2024年第4期81-87,共7页
Nonlinear metasurfaces and photonic crystals provide a significant way to generate and manipulate nonlinear signals owing to the resonance-and symmetry-based light-matter interactions supported by the artificial struc... Nonlinear metasurfaces and photonic crystals provide a significant way to generate and manipulate nonlinear signals owing to the resonance-and symmetry-based light-matter interactions supported by the artificial structures.However,the nonlinear conversion efficiency is generally limited by the angular dispersion of optical resonances especially in nonparaxial photonics.Here,we propose a metagrating realizing a quasi-bound-state in the continuum in a flat band to dramatically improve the third harmonic generation(THG)efficiency.A superior operating angular range is achieved based on the interlayer and intralayer couplings,which are introduced by breaking the mirror symmetry of the metagrating.We demonstrate the relation of angular dispersion between the nonlinear and linear responses at different incident angles.We also elucidate the mechanism of these offaxis flat-band-based nonlinear conversions through different mode decomposition.Our scheme provides a robust and analytical way for nonparaxial nonlinear generation and paves the way for further applications such as wide-angle nonlinear information transmission and enhanced nonlinear generation under tight focusing. 展开更多
关键词 nonlinear metasurfaces quasi-bound-state in the continuum angular dispersion third harmonic generation efficiency
原文传递
Optical third-harmonic generation of spherical quantum dots under inversely quadratic Hellmann plus inversely quadratic potential
8
作者 Xing Wang Xuechao Li 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第9期158-163,共6页
The third-harmonic generation(THG)coefficient for a spherical quantum dot system with inversely quadratic Hellmann plus inversely quadratic potential is investigated theoretically,considering the regulation of quantum... The third-harmonic generation(THG)coefficient for a spherical quantum dot system with inversely quadratic Hellmann plus inversely quadratic potential is investigated theoretically,considering the regulation of quantum size,confinement potential depth and the external environment.The numerical simulation results indicate that the THG coefficient can reach the order of 10~(-12)m~2V~(-2),which strongly relies on the tunable factor,with its resonant peak experiencing a redshift or blueshift.Interestingly,the effect of temperature on the THG coefficient in terms of peak location and size is consistent with the quantum dot radius but contrasts with the hydrostatic pressure.Thus,it is crucial to focus on the influence of internal and external parameters on nonlinear optical effects,and to implement the theory in practical experiments and the manufacture of optoelectronic devices. 展开更多
关键词 nonlinear optical effects quantum dot inversely quadratic hellmann potential inversely quadratic potential third harmonic generation coefficient
原文传递
Intracavity third-harmonic generation in a continuous-wave/self-mode-locked semiconductor disk laser
9
作者 李春玲 成佳 +5 位作者 朱仁江 王涛 蒋丽丹 佟存柱 宋晏蓉 张鹏 《Chinese Optics Letters》 SCIE EI CAS CSCD 2023年第5期58-62,共5页
The high peak power of picosecond pulses produced by a self-mode-locked semiconductor disk laser can effectively improve the efficiency of nonlinear frequency conversion.This paper presents the intracavity frequency t... The high peak power of picosecond pulses produced by a self-mode-locked semiconductor disk laser can effectively improve the efficiency of nonlinear frequency conversion.This paper presents the intracavity frequency tripling in a self-mode-locked semiconductor disk laser,and a picosecond pulse train at 327 nm wavelength is achieved.The pulse repetition rate is 0.49 GHz,and the pulse width is 5.0 ps.The obtained maximum ultraviolet output power under mode locking is 30.5 m W,and the corresponding conversion efficiency is obviously larger than that of continuous-wave operation.These ultraviolet picosecond pulses have high spatial and temporal resolution and can be applied in some emerging fields. 展开更多
关键词 third-harmonic generation self-mode locking semiconductor disk laser ULTRAVIOLET
原文传递
Quantitative effect of kerogen type on the hydrocarbon generation potential of Paleogene lacustrine source rocks,Liaohe Western Depression,China 被引量:1
10
作者 Sha-Sha Hui Xiong-Qi Pang +7 位作者 Fu-Jie Jiang Chen-Xi Wang Shu-Xing Mei Tao Hu Hong Pang Min Li Xiao-Long Zhou Kan-Yuan Shi 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期14-30,共17页
Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organ... Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organic carbon(TOC)content,various kerogen types,and a wide range of thermal maturity.Consequently,their hydrocarbon generation potential and resource estimation can be misinterpreted.In this study,geochemical tests,numerical analysis,hydrocarbon generation kinetics,and basin modeling were integrated to investigate the differential effects of kerogen types on the hydrocarbon generation potential of lacustrine source rocks.Optimized hydrocarbon generation and expulsion(HGE)models of different kerogen types were established quantitatively upon abundant Rock-Eval/TOC/vitrinite reflectance(R_(o))datasets.Three sets of good-excellent source rocks deposited in the fourth(Es4),third(Es3),and first(Es1)members of Paleogene Shahejie Formation,are predominantly types I-II_(1),II_(1)-II_(2),and II-III,respectively.The activation energy of types I-II_(2)kerogen is concentrated(180-230 kcal/mol),whereas that of type III kerogen is widely distributed(150-280 kcal/mol).The original hydrocarbon generation potentials of types I,II_(1),II_(2),and III kerogens are 790,510,270,and 85 mg/g TOC,respectively.The Ro values of the hydrocarbon generation threshold for type I-III source rocks gradually increase from 0.42%to 0.74%,and Ro values of the hydrocarbon expulsion threshold increase from 0.49%to 0.87%.Types I and II_(1)source rocks are characterized by earlier hydrocarbon generation,more rapid hydrocarbon expulsion,and narrower hydrocarbon generation windows than types II_(2)and III source rocks.The kerogen types also affect the HGE history and resource potential.Three types(conventional,tight,and shale oil/gas)and three levels(realistic,expected,and prospective)of hydrocarbon resources of different members in the Liaohe Western Depression are evaluated.Findings suggest that the Es3 member has considerable conventional and unconventional hydrocarbon resources.This study can quantitatively characterize the hydrocarbon generation potential of source rocks with different kerogen types,and facilitate a quick and accurate assessment of hydrocarbon resources,providing strategies for future oil and gas exploration. 展开更多
关键词 Kerogen type Hydrocarbon generation potential Lacustrine source rocks Liaohe western depression
下载PDF
Prediction of corrosion rate for friction stir processed WE43 alloy by combining PSO-based virtual sample generation and machine learning 被引量:1
11
作者 Annayath Maqbool Abdul Khalad Noor Zaman Khan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1518-1528,共11页
The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corros... The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corrosion rate.However,a better understanding of the correlation between the FSP process parameters and the corrosion rate is still lacking.The current study used machine learning to establish the relationship between the corrosion rate and FSP process parameters(rotational speed,traverse speed,and shoulder diameter)for WE43 alloy.The Taguchi L27 design of experiments was used for the experimental analysis.In addition,synthetic data was generated using particle swarm optimization for virtual sample generation(VSG).The application of VSG has led to an increase in the prediction accuracy of machine learning models.A sensitivity analysis was performed using Shapley Additive Explanations to determine the key factors affecting the corrosion rate.The shoulder diameter had a significant impact in comparison to the traverse speed.A graphical user interface(GUI)has been created to predict the corrosion rate using the identified factors.This study focuses on the WE43 alloy,but its findings can also be used to predict the corrosion rate of other magnesium alloys. 展开更多
关键词 Corrosion rate Friction stir processing Virtual sample generation Particle swarm optimization Machine learning Graphical user interface
下载PDF
Multi-objective optimization and evaluation of supercritical CO_(2) Brayton cycle for nuclear power generation 被引量:1
12
作者 Guo-Peng Yu Yong-Feng Cheng +1 位作者 Na Zhang Ping-Jian Ming 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期183-209,共27页
The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayto... The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully. 展开更多
关键词 Supercritical CO_(2)Brayton cycle Nuclear power generation Thermo-economic analysis Multi-objective optimization Decision-making methods
下载PDF
Harnessing overlapped temperature-salinity gradient in solar-driven interfacial seawater evaporation for efficient steam and electricity generation
13
作者 Peida Li Dongtong He +2 位作者 Jingchang Sun Jieshan Qiu Zhiyu Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期694-700,I0015,共8页
Solar-driven interfacial water evaporation(SIWE)offers a superb way to leverage concentrated solar heat to minimize energy dissipation during seawater desalination.It also engenders overlapped temperaturesalinity grad... Solar-driven interfacial water evaporation(SIWE)offers a superb way to leverage concentrated solar heat to minimize energy dissipation during seawater desalination.It also engenders overlapped temperaturesalinity gradient(TSG)between water-air interface and adjacent seawater,affording opportunities of harnessing electricity.However,the efficiency of conventional SIWE technologies is limited by significant challenges,including salt passivation to hinder evaporation and difficulties in exploiting overlapped TSG simultaneously.Herein,we report self-sustaining hybrid SIWE for not only sustainable seawater desalination but also efficient electricity generation from TSG.It enables spontaneous circulation of salt flux upon seawater evaporation,inducing a self-cleaning evaporative interface without salt passivation for stable steam generation.Meanwhile,this design enables spatial separation and simultaneous utilization of overlapped TSG to enhance electricity generation.These benefits render a remarkable efficiency of90.8%in solar energy utilization,manifesting in co-generation of solar steam at a fast rate of 2.01 kg m^(-2)-h^(-1)and electricity power of 1.91 W m^(-2)with high voltage.Directly interfacing the hybrid SIWE with seawater electrolyzer constructs a system for water-electricity-hydrogen co-generation without external electricity supply.It produces hydrogen at a rapid rate of 1.29 L h^(-1)m^(-2)and freshwater with 22 times lower Na+concentration than the World Health Organization(WHO)threshold. 展开更多
关键词 Solar-driven interfacial water evaporation Steam generation Electricity generation Seawater
下载PDF
Identifying multidisciplinary problems from scientific publications based on a text generation method
14
作者 Ziyan Xu Hongqi Han +2 位作者 Linna Li Junsheng Zhang Zexu Zhou 《Journal of Data and Information Science》 CSCD 2024年第3期213-237,共25页
Purpose:A text generation based multidisciplinary problem identification method is proposed,which does not rely on a large amount of data annotation.Design/methodology/approach:The proposed method first identifies the... Purpose:A text generation based multidisciplinary problem identification method is proposed,which does not rely on a large amount of data annotation.Design/methodology/approach:The proposed method first identifies the research objective types and disciplinary labels of papers using a text classification technique;second,it generates abstractive titles for each paper based on abstract and research objective types using a generative pre-trained language model;third,it extracts problem phrases from generated titles according to regular expression rules;fourth,it creates problem relation networks and identifies the same problems by exploiting a weighted community detection algorithm;finally,it identifies multidisciplinary problems based on the disciplinary labels of papers.Findings:Experiments in the“Carbon Peaking and Carbon Neutrality”field show that the proposed method can effectively identify multidisciplinary research problems.The disciplinary distribution of the identified problems is consistent with our understanding of multidisciplinary collaboration in the field.Research limitations:It is necessary to use the proposed method in other multidisciplinary fields to validate its effectiveness.Practical implications:Multidisciplinary problem identification helps to gather multidisciplinary forces to solve complex real-world problems for the governments,fund valuable multidisciplinary problems for research management authorities,and borrow ideas from other disciplines for researchers.Originality/value:This approach proposes a novel multidisciplinary problem identification method based on text generation,which identifies multidisciplinary problems based on generative abstractive titles of papers without data annotation required by standard sequence labeling techniques. 展开更多
关键词 Problem identification MULTIDISCIPLINARY Text generation Text classification
下载PDF
Amphipathic Janus Nanofibers Aerogel for Efficient Solar Steam Generation
15
作者 Rui Wang Jinshuo Deng +6 位作者 Ping Wu Qianli Ma Xiangting Dong Wensheng Yu Guixia Liu Jinxian Wang Lei Liu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期422-432,共11页
Solar steam generation is a promising water purification technology due to its low-cost and environmentally friendly applications in water purification and desalination.However,hydrophilic or hydrophobic materials alo... Solar steam generation is a promising water purification technology due to its low-cost and environmentally friendly applications in water purification and desalination.However,hydrophilic or hydrophobic materials alone are insufficient in achieving necessary characteristics for constructing highquality solar steam generators with good comprehensive properties.Herein,novel hydrophile/hydrophobe amphipathic Janus nanofibers aerogel is designed and used as a host material for preparing solar steam generators.The product consists of an internal cubic aerogel and an external layer of photothermal materials.The internal aerogel is composed of electrospun amphipathic Janus nanofibers.Owing to the unique composition and structure,the prepared solar steam generator integrates the features of high water evaporation rate(2.944 kg m^(-2)h^(-1)under 1 kW m^(-2)irradiation),selffloating,salt-resisting,and fast performance recovery after flipping.Moreover,the product also exhibits excellent properties on desalination and removal of organic pollutants.Compared with traditional hydrophilic aerogel host material,the amphipathic Janus nanofibers aerogel brings much higher water evaporation rate and salt resistance. 展开更多
关键词 AEROGELS electrospinning photothermal materials solar desalination solar steam generation
下载PDF
A Railway Fastener Inspection Method Based on Abnormal Sample Generation
16
作者 Shubin Zheng Yue Wang +3 位作者 Liming Li Xieqi Chen Lele Peng Zhanhao Shang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期565-592,共28页
Regular fastener detection is necessary to ensure the safety of railways.However,the number of abnormal fasteners is significantly lower than the number of normal fasteners in real railways.Existing supervised inspect... Regular fastener detection is necessary to ensure the safety of railways.However,the number of abnormal fasteners is significantly lower than the number of normal fasteners in real railways.Existing supervised inspectionmethods have insufficient detection ability in cases of imbalanced samples.To solve this problem,we propose an approach based on deep convolutional neural networks(DCNNs),which consists of three stages:fastener localization,abnormal fastener sample generation based on saliency detection,and fastener state inspection.First,a lightweight YOLOv5s is designed to achieve fast and precise localization of fastener regions.Then,the foreground clip region of a fastener image is extracted by the designed fastener saliency detection network(F-SDNet),combined with data augmentation to generate a large number of abnormal fastener samples and balance the number of abnormal and normal samples.Finally,a fastener inspection model called Fastener ResNet-8 is constructed by being trained with the augmented fastener dataset.Results show the effectiveness of our proposed method in solving the problem of sample imbalance in fastener detection.Qualitative and quantitative comparisons show that the proposed F-SDNet outperforms other state-of-the-art methods in clip region extraction,reaching MAE and max F-measure of 0.0215 and 0.9635,respectively.In addition,the FPS of the fastener state inspection model reached 86.2,and the average accuracy reached 98.7%on 614 augmented fastener test sets and 99.9%on 7505 real fastener datasets. 展开更多
关键词 Railway fastener sample generation inspection model deep learning
下载PDF
Enhanced picosecond terahertz wave generation based on cascade effects in a terahertz parametric generator
17
作者 张敬喜 王与烨 +5 位作者 徐炳烽 陈锴 刘紫鲲 马鸿儒 徐德刚 姚建铨 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期271-275,共5页
Enhanced terahertz wave generation via a Stokes cascade process has been demonstrated using picosecond pulse pumped terahertz parametric generation at 1 kHz repetition rate.Clear cascade saturation of terahertz output... Enhanced terahertz wave generation via a Stokes cascade process has been demonstrated using picosecond pulse pumped terahertz parametric generation at 1 kHz repetition rate.Clear cascade saturation of terahertz output was observed,and the corresponding cascade-Stokes spectra were analyzed.The maximum terahertz wave average power was 22μW under a pump power of 30 W,whereas the maximum power conversion efficiency was 8×10^(-7)under a pump power of 21 W.The THz power fluctuation was measured to be about 1%in 20 min.This THz parametric source with a relatively stable output is suitable for a variety of practical applications. 展开更多
关键词 terahertz parametric generation stimulated polariton cascade effect CLN crystal
下载PDF
Efficient C-N coupling in electrocatalytic urea generation on copper carbonate hydroxide electrocatalysts
18
作者 Yinuo Wang Yian Wang +11 位作者 Qinglan Zhao Hongming Xu Shangqian Zhu Fei Yang Ernest P.Delmo Xiaoyi Qiu Chi Song Juhee Jang Tiehuai Li Ping Gao MDanny Gu Minhua Shao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期289-298,I0008,共11页
Urea generation through electrochemical CO_(2) and NO_(3)~-co-reduction reaction(CO_(2)NO_(3)RR)is still limited by either the low selectivity or yield rate of urea.Herein,we report copper carbonate hydroxide(Cu_2(OH)... Urea generation through electrochemical CO_(2) and NO_(3)~-co-reduction reaction(CO_(2)NO_(3)RR)is still limited by either the low selectivity or yield rate of urea.Herein,we report copper carbonate hydroxide(Cu_2(OH)_2CO_(3))as an efficient CO_(2)NO_(3)RR electrocatalyst with an impressive urea Faradaic efficiency of45.2%±2.1%and a high yield rate of 1564.5±145.2μg h~(-1)mg_(cat)~(-1).More importantly,H_(2) evolution is fully inhibited on this electrocatalyst over a wide potential range between-0.3 and-0.8 V versus reversible hydrogen electrode.Our thermodynamic simulation reveals that the first C-N coupling follows a unique pathway on Cu_2(OH)_2CO_(3) by combining the two intermediates,~*COOH and~*NHO.This work demonstrates that high selectivity and yield rate of urea can be simultaneously achieved on simple Cu-based electrocatalysts in CO_(2)NO_(3)RR,and provide guidance for rational design of more advanced catalysts. 展开更多
关键词 Copper carbonate hydroxide Co-reduction Urea generation C-N coupling DFT calculation
下载PDF
Impact of volcanism on the formation and hydrocarbon generation of organic-rich shale in the Jiyang Depression, Bohai Bay Basin, China
19
作者 Jia-Hong Gao Xin-Ping Liang +5 位作者 Zhi-Jun Jin Quan-You Liu Chang-Rong Li Xiao-Wei Huang Ju-Ye Shi Peng Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1539-1551,共13页
Globally,most organic-rich shales are deposited with volcanic ash layers.Volcanic ash,a source for many sedimentary basins,can affect the sedimentary water environment,alter the primary productivity,and preserve the o... Globally,most organic-rich shales are deposited with volcanic ash layers.Volcanic ash,a source for many sedimentary basins,can affect the sedimentary water environment,alter the primary productivity,and preserve the organic matter(OM)through physical,chemical,and biological reactions.With an increasing number of breakthroughs in shale oil exploration in the Bohai Bay Basin in recent years,less attention has been paid to the crucial role of volcanic impact especially its influence on the OM enrichment and hydrocarbon formation.Here,we studied the petrology,mineralogy,and geochemical characteristics of the organic-rich shale in the upper submember of the fourth member(Es_(4)^(1))and the lower submember of the third member(Es_(3)^(3))of the Shahejie Formation,aiming to better understand the volcanic impact on organic-rich shale formation.Our results show that total organic carbon is higher in the upper shale intervals rich in volcanic ash with enriched light rare earth elements and moderate Eu anomalies.This indicates that volcanism promoted OM formation before or after the eruption.The positive correlation between Eu/Eu*and Post-Archean Australian Shale indicates hydrothermal activity before the volcanic eruption.The plane graph of the hydrocarbon-generating intensity(S1+S2)suggests that the heat released by volcanism promoted hydrocarbon generation.Meanwhile,the nutrients carried by volcanic ash promoted biological blooms during Es_(4)^(1 )and Es_(3)^(3) deposition,yielding a high primary productivity.Biological blooms consume large amounts of oxygen and form anoxic environments conducive to the burial and preservation of OM.Therefore,this study helps to further understand the organic-inorganic interactions caused by typical geological events and provides a guide for the next step of shale oil exploration and development in other lacustrine basins in China. 展开更多
关键词 Volcanic ash Hydrocarbon generation Organic-rich shale Shahejie Formation Jiyang Depression
下载PDF
Automatic Generation of Artificial Space Weather Forecast Product Based on Sequence-to-sequence Model
20
作者 罗冠霆 ZOU Yenan CAI Yanxia 《空间科学学报》 CAS CSCD 北大核心 2024年第1期80-94,共15页
Both analyzing a large amount of space weather observed data and alleviating personal experience bias are significant challenges in generating artificial space weather forecast products.With the use of natural languag... Both analyzing a large amount of space weather observed data and alleviating personal experience bias are significant challenges in generating artificial space weather forecast products.With the use of natural language generation methods based on the sequence-to-sequence model,space weather forecast texts can be automatically generated.To conduct our generation tasks at a fine-grained level,a taxonomy of space weather phenomena based on descriptions is presented.Then,our MDH(Multi-Domain Hybrid)model is proposed for generating space weather summaries in two stages.This model is composed of three sequence-to-sequence-based deep neural network sub-models(one Bidirectional Auto-Regressive Transformers pre-trained model and two Transformer models).Then,to evaluate how well MDH performs,quality evaluation metrics based on two prevalent automatic metrics and our innovative human metric are presented.The comprehensive scores of the three summaries generating tasks on testing datasets are 70.87,93.50,and 92.69,respectively.The results suggest that MDH can generate space weather summaries with high accuracy and coherence,as well as suitable length,which can assist forecasters in generating high-quality space weather forecast products,despite the data being starved. 展开更多
关键词 Space weather Deep learning Data-to-text Natural language generation
下载PDF
上一页 1 2 205 下一页 到第
使用帮助 返回顶部